MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgcntz Structured version   Visualization version   GIF version

Theorem oppgcntz 18486
Description: A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
oppggic.o 𝑂 = (oppg𝐺)
oppgcntz.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
oppgcntz (𝑍𝐴) = ((Cntz‘𝑂)‘𝐴)

Proof of Theorem oppgcntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2828 . . . . . . 7 ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑦(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑦))
2 eqid 2821 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
3 oppggic.o . . . . . . . . 9 𝑂 = (oppg𝐺)
4 eqid 2821 . . . . . . . . 9 (+g𝑂) = (+g𝑂)
52, 3, 4oppgplus 18471 . . . . . . . 8 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
62, 3, 4oppgplus 18471 . . . . . . . 8 (𝑦(+g𝑂)𝑥) = (𝑥(+g𝐺)𝑦)
75, 6eqeq12i 2836 . . . . . . 7 ((𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥) ↔ (𝑦(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑦))
81, 7bitr4i 280 . . . . . 6 ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))
98ralbii 3165 . . . . 5 (∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))
109anbi2i 624 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥)))
1110anbi2i 624 . . 3 ((𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))))
12 eqid 2821 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
13 oppgcntz.z . . . . . 6 𝑍 = (Cntz‘𝐺)
1412, 13cntzrcl 18451 . . . . 5 (𝑥 ∈ (𝑍𝐴) → (𝐺 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺)))
1514simprd 498 . . . 4 (𝑥 ∈ (𝑍𝐴) → 𝐴 ⊆ (Base‘𝐺))
1612, 2, 13elcntz 18446 . . . 4 (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
1715, 16biadanii 820 . . 3 (𝑥 ∈ (𝑍𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
183, 12oppgbas 18473 . . . . . 6 (Base‘𝐺) = (Base‘𝑂)
19 eqid 2821 . . . . . 6 (Cntz‘𝑂) = (Cntz‘𝑂)
2018, 19cntzrcl 18451 . . . . 5 (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → (𝑂 ∈ V ∧ 𝐴 ⊆ (Base‘𝐺)))
2120simprd 498 . . . 4 (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) → 𝐴 ⊆ (Base‘𝐺))
2218, 4, 19elcntz 18446 . . . 4 (𝐴 ⊆ (Base‘𝐺) → (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))))
2321, 22biadanii 820 . . 3 (𝑥 ∈ ((Cntz‘𝑂)‘𝐴) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝐴 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑂)𝑥))))
2411, 17, 233bitr4i 305 . 2 (𝑥 ∈ (𝑍𝐴) ↔ 𝑥 ∈ ((Cntz‘𝑂)‘𝐴))
2524eqriv 2818 1 (𝑍𝐴) = ((Cntz‘𝑂)‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  wss 3936  cfv 6350  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Cntzccntz 18439  oppgcoppg 18467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-cntz 18441  df-oppg 18468
This theorem is referenced by:  oppgcntr  18487  gsumzoppg  19058  gsumzinv  19059
  Copyright terms: Public domain W3C validator