MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgsubg Structured version   Visualization version   GIF version

Theorem oppgsubg 18493
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
oppggic.o 𝑂 = (oppg𝐺)
Assertion
Ref Expression
oppgsubg (SubGrp‘𝐺) = (SubGrp‘𝑂)

Proof of Theorem oppgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgrcl 18286 . . 3 (𝑥 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 subgrcl 18286 . . . 4 (𝑥 ∈ (SubGrp‘𝑂) → 𝑂 ∈ Grp)
3 oppggic.o . . . . 5 𝑂 = (oppg𝐺)
43oppggrpb 18488 . . . 4 (𝐺 ∈ Grp ↔ 𝑂 ∈ Grp)
52, 4sylibr 236 . . 3 (𝑥 ∈ (SubGrp‘𝑂) → 𝐺 ∈ Grp)
63oppgsubm 18492 . . . . . . 7 (SubMnd‘𝐺) = (SubMnd‘𝑂)
76eleq2i 2906 . . . . . 6 (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂))
87a1i 11 . . . . 5 (𝐺 ∈ Grp → (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂)))
9 eqid 2823 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
103, 9oppginv 18489 . . . . . . . 8 (𝐺 ∈ Grp → (invg𝐺) = (invg𝑂))
1110fveq1d 6674 . . . . . . 7 (𝐺 ∈ Grp → ((invg𝐺)‘𝑦) = ((invg𝑂)‘𝑦))
1211eleq1d 2899 . . . . . 6 (𝐺 ∈ Grp → (((invg𝐺)‘𝑦) ∈ 𝑥 ↔ ((invg𝑂)‘𝑦) ∈ 𝑥))
1312ralbidv 3199 . . . . 5 (𝐺 ∈ Grp → (∀𝑦𝑥 ((invg𝐺)‘𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥 ((invg𝑂)‘𝑦) ∈ 𝑥))
148, 13anbi12d 632 . . . 4 (𝐺 ∈ Grp → ((𝑥 ∈ (SubMnd‘𝐺) ∧ ∀𝑦𝑥 ((invg𝐺)‘𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubMnd‘𝑂) ∧ ∀𝑦𝑥 ((invg𝑂)‘𝑦) ∈ 𝑥)))
159issubg3 18299 . . . 4 (𝐺 ∈ Grp → (𝑥 ∈ (SubGrp‘𝐺) ↔ (𝑥 ∈ (SubMnd‘𝐺) ∧ ∀𝑦𝑥 ((invg𝐺)‘𝑦) ∈ 𝑥)))
16 eqid 2823 . . . . . 6 (invg𝑂) = (invg𝑂)
1716issubg3 18299 . . . . 5 (𝑂 ∈ Grp → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑥 ∈ (SubMnd‘𝑂) ∧ ∀𝑦𝑥 ((invg𝑂)‘𝑦) ∈ 𝑥)))
184, 17sylbi 219 . . . 4 (𝐺 ∈ Grp → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑥 ∈ (SubMnd‘𝑂) ∧ ∀𝑦𝑥 ((invg𝑂)‘𝑦) ∈ 𝑥)))
1914, 15, 183bitr4d 313 . . 3 (𝐺 ∈ Grp → (𝑥 ∈ (SubGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
201, 5, 19pm5.21nii 382 . 2 (𝑥 ∈ (SubGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝑂))
2120eqriv 2820 1 (SubGrp‘𝐺) = (SubGrp‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  cfv 6357  SubMndcsubmnd 17957  Grpcgrp 18105  invgcminusg 18106  SubGrpcsubg 18275  oppgcoppg 18475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-subg 18278  df-oppg 18476
This theorem is referenced by:  lsmmod2  18804  lsmdisj2r  18813
  Copyright terms: Public domain W3C validator