Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgtmd Structured version   Visualization version   GIF version

Theorem oppgtmd 21948
 Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
oppgtmd.1 𝑂 = (oppg𝐺)
Assertion
Ref Expression
oppgtmd (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd)

Proof of Theorem oppgtmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tmdmnd 21926 . . 3 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
2 oppgtmd.1 . . . 4 𝑂 = (oppg𝐺)
32oppgmnd 17830 . . 3 (𝐺 ∈ Mnd → 𝑂 ∈ Mnd)
41, 3syl 17 . 2 (𝐺 ∈ TopMnd → 𝑂 ∈ Mnd)
5 eqid 2651 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
6 eqid 2651 . . . 4 (Base‘𝐺) = (Base‘𝐺)
75, 6tmdtopon 21932 . . 3 (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
82, 6oppgbas 17827 . . . 4 (Base‘𝐺) = (Base‘𝑂)
92, 5oppgtopn 17829 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝑂)
108, 9istps 20786 . . 3 (𝑂 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
117, 10sylibr 224 . 2 (𝐺 ∈ TopMnd → 𝑂 ∈ TopSp)
12 eqid 2651 . . 3 (+g𝐺) = (+g𝐺)
13 id 22 . . 3 (𝐺 ∈ TopMnd → 𝐺 ∈ TopMnd)
147, 7cnmpt2nd 21520 . . 3 (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
157, 7cnmpt1st 21519 . . 3 (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
165, 12, 13, 7, 7, 14, 15cnmpt2plusg 21939 . 2 (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
17 eqid 2651 . . . . 5 (+g𝑂) = (+g𝑂)
18 eqid 2651 . . . . 5 (+𝑓𝑂) = (+𝑓𝑂)
198, 17, 18plusffval 17294 . . . 4 (+𝑓𝑂) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝑂)𝑦))
2012, 2, 17oppgplus 17825 . . . . 5 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
216, 6, 20mpt2eq123i 6760 . . . 4 (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝑂)𝑦)) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g𝐺)𝑥))
2219, 21eqtr2i 2674 . . 3 (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g𝐺)𝑥)) = (+𝑓𝑂)
2322, 9istmd 21925 . 2 (𝑂 ∈ TopMnd ↔ (𝑂 ∈ Mnd ∧ 𝑂 ∈ TopSp ∧ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
244, 11, 16, 23syl3anbrc 1265 1 (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523   ∈ wcel 2030  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692  Basecbs 15904  +gcplusg 15988  TopOpenctopn 16129  +𝑓cplusf 17286  Mndcmnd 17341  oppgcoppg 17821  TopOnctopon 20763  TopSpctps 20784   Cn ccn 21076   ×t ctx 21411  TopMndctmd 21921 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-tset 16007  df-rest 16130  df-topn 16131  df-0g 16149  df-topgen 16151  df-plusf 17288  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-oppg 17822  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-tx 21413  df-tmd 21923 This theorem is referenced by:  oppgtgp  21949
 Copyright terms: Public domain W3C validator