MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgval Structured version   Visualization version   GIF version

Theorem oppgval 17823
Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
Hypotheses
Ref Expression
oppgval.2 + = (+g𝑅)
oppgval.3 𝑂 = (oppg𝑅)
Assertion
Ref Expression
oppgval 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)

Proof of Theorem oppgval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oppgval.3 . 2 𝑂 = (oppg𝑅)
2 id 22 . . . . 5 (𝑥 = 𝑅𝑥 = 𝑅)
3 fveq2 6229 . . . . . . . 8 (𝑥 = 𝑅 → (+g𝑥) = (+g𝑅))
4 oppgval.2 . . . . . . . 8 + = (+g𝑅)
53, 4syl6eqr 2703 . . . . . . 7 (𝑥 = 𝑅 → (+g𝑥) = + )
65tposeqd 7400 . . . . . 6 (𝑥 = 𝑅 → tpos (+g𝑥) = tpos + )
76opeq2d 4440 . . . . 5 (𝑥 = 𝑅 → ⟨(+g‘ndx), tpos (+g𝑥)⟩ = ⟨(+g‘ndx), tpos + ⟩)
82, 7oveq12d 6708 . . . 4 (𝑥 = 𝑅 → (𝑥 sSet ⟨(+g‘ndx), tpos (+g𝑥)⟩) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
9 df-oppg 17822 . . . 4 oppg = (𝑥 ∈ V ↦ (𝑥 sSet ⟨(+g‘ndx), tpos (+g𝑥)⟩))
10 ovex 6718 . . . 4 (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) ∈ V
118, 9, 10fvmpt 6321 . . 3 (𝑅 ∈ V → (oppg𝑅) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
12 fvprc 6223 . . . 4 𝑅 ∈ V → (oppg𝑅) = ∅)
13 reldmsets 15933 . . . . 5 Rel dom sSet
1413ovprc1 6724 . . . 4 𝑅 ∈ V → (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) = ∅)
1512, 14eqtr4d 2688 . . 3 𝑅 ∈ V → (oppg𝑅) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
1611, 15pm2.61i 176 . 2 (oppg𝑅) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
171, 16eqtri 2673 1 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1523  wcel 2030  Vcvv 3231  c0 3948  cop 4216  cfv 5926  (class class class)co 6690  tpos ctpos 7396  ndxcnx 15901   sSet csts 15902  +gcplusg 15988  oppgcoppg 17821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-res 5155  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-tpos 7397  df-sets 15911  df-oppg 17822
This theorem is referenced by:  oppgplusfval  17824  oppglem  17826
  Copyright terms: Public domain W3C validator