MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem1 Structured version   Visualization version   GIF version

Theorem opphllem1 25357
Description: Lemma for opphl 25364. (Contributed by Thierry Arnoux, 20-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphllem1.s 𝑆 = ((pInvG‘𝐺)‘𝑀)
opphllem1.a (𝜑𝐴𝑃)
opphllem1.b (𝜑𝐵𝑃)
opphllem1.c (𝜑𝐶𝑃)
opphllem1.r (𝜑𝑅𝐷)
opphllem1.o (𝜑𝐴𝑂𝐶)
opphllem1.m (𝜑𝑀𝐷)
opphllem1.n (𝜑𝐴 = (𝑆𝐶))
opphllem1.x (𝜑𝐴𝑅)
opphllem1.y (𝜑𝐵𝑅)
opphllem1.z (𝜑𝐵 ∈ (𝑅𝐼𝐴))
Assertion
Ref Expression
opphllem1 (𝜑𝐵𝑂𝐶)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑀   𝑡,𝑂   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem1
StepHypRef Expression
1 simpr 475 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
2 simplr 787 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐵𝐷)
31, 2eqeltrd 2687 . . . . 5 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴𝐷)
4 hpg.p . . . . . . 7 𝑃 = (Base‘𝐺)
5 hpg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
6 opphl.l . . . . . . 7 𝐿 = (LineG‘𝐺)
7 opphl.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
87ad2antrr 757 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐺 ∈ TarskiG)
9 opphllem1.b . . . . . . . 8 (𝜑𝐵𝑃)
109ad2antrr 757 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑃)
11 opphl.d . . . . . . . . 9 (𝜑𝐷 ∈ ran 𝐿)
12 opphllem1.r . . . . . . . . 9 (𝜑𝑅𝐷)
134, 6, 5, 7, 11, 12tglnpt 25162 . . . . . . . 8 (𝜑𝑅𝑃)
1413ad2antrr 757 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝑃)
15 opphllem1.a . . . . . . . 8 (𝜑𝐴𝑃)
1615ad2antrr 757 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝑃)
17 opphllem1.y . . . . . . . 8 (𝜑𝐵𝑅)
1817ad2antrr 757 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑅)
1918necomd 2836 . . . . . . . 8 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐵)
20 opphllem1.z . . . . . . . . 9 (𝜑𝐵 ∈ (𝑅𝐼𝐴))
2120ad2antrr 757 . . . . . . . 8 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵 ∈ (𝑅𝐼𝐴))
224, 5, 6, 8, 14, 10, 16, 19, 21btwnlng3 25234 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐿𝐵))
234, 5, 6, 8, 10, 14, 16, 18, 22lncom 25235 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝐵𝐿𝑅))
2411ad2antrr 757 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 ∈ ran 𝐿)
25 simplr 787 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝐷)
2612ad2antrr 757 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐷)
274, 5, 6, 8, 10, 14, 18, 18, 24, 25, 26tglinethru 25249 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 = (𝐵𝐿𝑅))
2823, 27eleqtrrd 2690 . . . . 5 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝐷)
293, 28pm2.61dane 2868 . . . 4 ((𝜑𝐵𝐷) → 𝐴𝐷)
30 hpg.d . . . . . 6 = (dist‘𝐺)
31 hpg.o . . . . . 6 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
32 opphllem1.c . . . . . 6 (𝜑𝐶𝑃)
33 opphllem1.o . . . . . 6 (𝜑𝐴𝑂𝐶)
344, 30, 5, 31, 6, 11, 7, 15, 32, 33oppne1 25351 . . . . 5 (𝜑 → ¬ 𝐴𝐷)
3534adantr 479 . . . 4 ((𝜑𝐵𝐷) → ¬ 𝐴𝐷)
3629, 35pm2.65da 597 . . 3 (𝜑 → ¬ 𝐵𝐷)
374, 30, 5, 31, 6, 11, 7, 15, 32, 33oppne2 25352 . . 3 (𝜑 → ¬ 𝐶𝐷)
38 opphllem1.m . . . . . 6 (𝜑𝑀𝐷)
394, 6, 5, 7, 11, 38tglnpt 25162 . . . . 5 (𝜑𝑀𝑃)
40 eqid 2609 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
41 opphllem1.s . . . . . . 7 𝑆 = ((pInvG‘𝐺)‘𝑀)
424, 30, 5, 6, 40, 7, 39, 41, 15mirbtwn 25271 . . . . . 6 (𝜑𝑀 ∈ ((𝑆𝐴)𝐼𝐴))
43 opphllem1.n . . . . . . . . 9 (𝜑𝐴 = (𝑆𝐶))
4443eqcomd 2615 . . . . . . . 8 (𝜑 → (𝑆𝐶) = 𝐴)
454, 30, 5, 6, 40, 7, 39, 41, 32, 44mircom 25276 . . . . . . 7 (𝜑 → (𝑆𝐴) = 𝐶)
4645oveq1d 6542 . . . . . 6 (𝜑 → ((𝑆𝐴)𝐼𝐴) = (𝐶𝐼𝐴))
4742, 46eleqtrd 2689 . . . . 5 (𝜑𝑀 ∈ (𝐶𝐼𝐴))
484, 30, 5, 7, 13, 32, 15, 9, 39, 20, 47axtgpasch 25083 . . . 4 (𝜑 → ∃𝑡𝑃 (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
497ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝐺 ∈ TarskiG)
5013ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅𝑃)
51 simplrl 795 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡𝑃)
52 simplrr 796 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
5352simprd 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑀𝐼𝑅))
54 simpr 475 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑀 = 𝑅)
5554oveq1d 6542 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑀𝐼𝑅) = (𝑅𝐼𝑅))
5653, 55eleqtrd 2689 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑅𝐼𝑅))
574, 30, 5, 49, 50, 51, 56axtgbtwnid 25082 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅 = 𝑡)
5812ad2antrr 757 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅𝐷)
5957, 58eqeltrrd 2688 . . . . . . . 8 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡𝐷)
607adantr 479 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝐺 ∈ TarskiG)
6160adantlr 746 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝐺 ∈ TarskiG)
6239adantr 479 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝑀𝑃)
6362adantlr 746 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑀𝑃)
6413adantr 479 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝑅𝑃)
6564adantlr 746 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑅𝑃)
66 simplrl 795 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡𝑃)
67 simpr 475 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑀𝑅)
68 simplrr 796 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
6968simprd 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡 ∈ (𝑀𝐼𝑅))
704, 5, 6, 61, 63, 65, 66, 67, 69btwnlng1 25232 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡 ∈ (𝑀𝐿𝑅))
71 simpr 475 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝑀𝑅)
7211adantr 479 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝐷 ∈ ran 𝐿)
7338adantr 479 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝑀𝐷)
7412adantr 479 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝑅𝐷)
754, 5, 6, 60, 62, 64, 71, 71, 72, 73, 74tglinethru 25249 . . . . . . . . . 10 ((𝜑𝑀𝑅) → 𝐷 = (𝑀𝐿𝑅))
7675adantlr 746 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝐷 = (𝑀𝐿𝑅))
7770, 76eleqtrrd 2690 . . . . . . . 8 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡𝐷)
7859, 77pm2.61dane 2868 . . . . . . 7 ((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡𝐷)
79 simprrl 799 . . . . . . 7 ((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡 ∈ (𝐵𝐼𝐶))
8078, 79jca 552 . . . . . 6 ((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → (𝑡𝐷𝑡 ∈ (𝐵𝐼𝐶)))
8180ex 448 . . . . 5 (𝜑 → ((𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅))) → (𝑡𝐷𝑡 ∈ (𝐵𝐼𝐶))))
8281reximdv2 2996 . . . 4 (𝜑 → (∃𝑡𝑃 (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)) → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶)))
8348, 82mpd 15 . . 3 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶))
8436, 37, 83jca31 554 . 2 (𝜑 → ((¬ 𝐵𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶)))
854, 30, 5, 31, 9, 32islnopp 25349 . 2 (𝜑 → (𝐵𝑂𝐶 ↔ ((¬ 𝐵𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶))))
8684, 85mpbird 245 1 (𝜑𝐵𝑂𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  wrex 2896  cdif 3536   class class class wbr 4577  {copab 4636  ran crn 5029  cfv 5790  (class class class)co 6527  Basecbs 15641  distcds 15723  TarskiGcstrkg 25046  Itvcitv 25052  LineGclng 25053  pInvGcmir 25265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-hash 12935  df-word 13100  df-concat 13102  df-s1 13103  df-s2 13390  df-s3 13391  df-trkgc 25064  df-trkgb 25065  df-trkgcb 25066  df-trkg 25069  df-cgrg 25124  df-mir 25266
This theorem is referenced by:  opphllem2  25358
  Copyright terms: Public domain W3C validator