Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprc1 Structured version   Visualization version   GIF version

Theorem opprc1 4393
 Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 4392. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 473 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
21con3i 150 . 2 𝐴 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 opprc 4392 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
42, 3syl 17 1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  Vcvv 3186  ∅c0 3891  ⟨cop 4154 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3188  df-dif 3558  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-op 4155 This theorem is referenced by:  brprcneu  6141  bj-inftyexpidisj  32730  eu2ndop1stv  40506
 Copyright terms: Public domain W3C validator