MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprdomn Structured version   Visualization version   GIF version

Theorem opprdomn 19241
Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
opprdomn.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprdomn (𝑅 ∈ Domn → 𝑂 ∈ Domn)

Proof of Theorem opprdomn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnnzr 19235 . . 3 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 opprdomn.1 . . . 4 𝑂 = (oppr𝑅)
32opprnzr 19205 . . 3 (𝑅 ∈ NzRing → 𝑂 ∈ NzRing)
41, 3syl 17 . 2 (𝑅 ∈ Domn → 𝑂 ∈ NzRing)
5 eqid 2621 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2621 . . . . . . . 8 (.r𝑅) = (.r𝑅)
7 eqid 2621 . . . . . . . 8 (0g𝑅) = (0g𝑅)
85, 6, 7domneq0 19237 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑦(.r𝑅)𝑥) = (0g𝑅) ↔ (𝑦 = (0g𝑅) ∨ 𝑥 = (0g𝑅))))
983com23 1268 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r𝑅)𝑥) = (0g𝑅) ↔ (𝑦 = (0g𝑅) ∨ 𝑥 = (0g𝑅))))
10 eqid 2621 . . . . . . . 8 (.r𝑂) = (.r𝑂)
115, 6, 2, 10opprmul 18566 . . . . . . 7 (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥)
1211eqeq1i 2626 . . . . . 6 ((𝑥(.r𝑂)𝑦) = (0g𝑅) ↔ (𝑦(.r𝑅)𝑥) = (0g𝑅))
13 orcom 402 . . . . . 6 ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑦 = (0g𝑅) ∨ 𝑥 = (0g𝑅)))
149, 12, 133bitr4g 303 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑂)𝑦) = (0g𝑅) ↔ (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
1514biimpd 219 . . . 4 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑂)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
16153expb 1263 . . 3 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
1716ralrimivva 2967 . 2 (𝑅 ∈ Domn → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
182, 5opprbas 18569 . . 3 (Base‘𝑅) = (Base‘𝑂)
192, 7oppr0 18573 . . 3 (0g𝑅) = (0g𝑂)
2018, 10, 19isdomn 19234 . 2 (𝑂 ∈ Domn ↔ (𝑂 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))))
214, 17, 20sylanbrc 697 1 (𝑅 ∈ Domn → 𝑂 ∈ Domn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  w3a 1036   = wceq 1480  wcel 1987  wral 2908  cfv 5857  (class class class)co 6615  Basecbs 15800  .rcmulr 15882  0gc0g 16040  opprcoppr 18562  NzRingcnzr 19197  Domncdomn 19220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-plusg 15894  df-mulr 15895  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365  df-minusg 17366  df-mgp 18430  df-ur 18442  df-ring 18489  df-oppr 18563  df-nzr 19198  df-domn 19224
This theorem is referenced by:  fidomndrng  19247
  Copyright terms: Public domain W3C validator