MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprring Structured version   Visualization version   GIF version

Theorem opprring 18402
Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprring (𝑅 ∈ Ring → 𝑂 ∈ Ring)

Proof of Theorem opprring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
2 eqid 2609 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbas 18400 . . 3 (Base‘𝑅) = (Base‘𝑂)
43a1i 11 . 2 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑂))
5 eqid 2609 . . . 4 (+g𝑅) = (+g𝑅)
61, 5oppradd 18401 . . 3 (+g𝑅) = (+g𝑂)
76a1i 11 . 2 (𝑅 ∈ Ring → (+g𝑅) = (+g𝑂))
8 eqidd 2610 . 2 (𝑅 ∈ Ring → (.r𝑂) = (.r𝑂))
9 ringgrp 18323 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
103, 6grpprop 17209 . . 3 (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)
119, 10sylib 206 . 2 (𝑅 ∈ Ring → 𝑂 ∈ Grp)
12 eqid 2609 . . . 4 (.r𝑅) = (.r𝑅)
13 eqid 2609 . . . 4 (.r𝑂) = (.r𝑂)
142, 12, 1, 13opprmul 18397 . . 3 (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥)
152, 12ringcl 18332 . . . 4 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
16153com23 1262 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
1714, 16syl5eqel 2691 . 2 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) ∈ (Base‘𝑅))
18 simpl 471 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
19 simpr3 1061 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
20 simpr2 1060 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
21 simpr1 1059 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
222, 12ringass 18335 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
2318, 19, 20, 21, 22syl13anc 1319 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
2423eqcomd 2615 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
2514oveq1i 6536 . . . 4 ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧)
262, 12, 1, 13opprmul 18397 . . . 4 ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥))
2725, 26eqtri 2631 . . 3 ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥))
282, 12, 1, 13opprmul 18397 . . . . 5 (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦)
2928oveq2i 6537 . . . 4 (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)) = (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦))
302, 12, 1, 13opprmul 18397 . . . 4 (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥)
3129, 30eqtri 2631 . . 3 (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥)
3224, 27, 313eqtr4g 2668 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)))
332, 5, 12ringdir 18338 . . . 4 ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
3418, 20, 19, 21, 33syl13anc 1319 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
352, 12, 1, 13opprmul 18397 . . 3 (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥)
362, 12, 1, 13opprmul 18397 . . . 4 (𝑥(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑥)
3714, 36oveq12i 6538 . . 3 ((𝑥(.r𝑂)𝑦)(+g𝑅)(𝑥(.r𝑂)𝑧)) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥))
3834, 35, 373eqtr4g 2668 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑂)𝑦)(+g𝑅)(𝑥(.r𝑂)𝑧)))
392, 5, 12ringdi 18337 . . . 4 ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4018, 19, 21, 20, 39syl13anc 1319 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
412, 12, 1, 13opprmul 18397 . . 3 ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))
4236, 28oveq12i 6538 . . 3 ((𝑥(.r𝑂)𝑧)(+g𝑅)(𝑦(.r𝑂)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦))
4340, 41, 423eqtr4g 2668 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = ((𝑥(.r𝑂)𝑧)(+g𝑅)(𝑦(.r𝑂)𝑧)))
44 eqid 2609 . . 3 (1r𝑅) = (1r𝑅)
452, 44ringidcl 18339 . 2 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
462, 12, 1, 13opprmul 18397 . . 3 ((1r𝑅)(.r𝑂)𝑥) = (𝑥(.r𝑅)(1r𝑅))
472, 12, 44ringridm 18343 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(1r𝑅)) = 𝑥)
4846, 47syl5eq 2655 . 2 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑂)𝑥) = 𝑥)
492, 12, 1, 13opprmul 18397 . . 3 (𝑥(.r𝑂)(1r𝑅)) = ((1r𝑅)(.r𝑅)𝑥)
502, 12, 44ringlidm 18342 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
5149, 50syl5eq 2655 . 2 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(1r𝑅)) = 𝑥)
524, 7, 8, 11, 17, 32, 38, 43, 45, 48, 51isringd 18356 1 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  cfv 5789  (class class class)co 6526  Basecbs 15643  +gcplusg 15716  .rcmulr 15717  Grpcgrp 17193  1rcur 18272  Ringcrg 18318  opprcoppr 18393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-plusg 15729  df-mulr 15730  df-0g 15873  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-grp 17196  df-mgp 18261  df-ur 18273  df-ring 18320  df-oppr 18394
This theorem is referenced by:  opprringb  18403  mulgass3  18408  1unit  18429  unitmulcl  18435  unitnegcl  18452  irredlmul  18479  isdrngrd  18544  issrngd  18632  2idlcpbl  19003  opprnzr  19034  ply1divalg2  23646  lduallmodlem  33240
  Copyright terms: Public domain W3C validator