MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprsubg Structured version   Visualization version   GIF version

Theorem opprsubg 18405
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubg (SubGrp‘𝑅) = (SubGrp‘𝑂)

Proof of Theorem opprsubg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
2 eqid 2609 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbas 18398 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
4 eqid 2609 . . . . . 6 (+g𝑅) = (+g𝑅)
51, 4oppradd 18399 . . . . 5 (+g𝑅) = (+g𝑂)
63, 5grpprop 17207 . . . 4 (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)
7 biid 249 . . . 4 (𝑥 ⊆ (Base‘𝑅) ↔ 𝑥 ⊆ (Base‘𝑅))
8 vex 3175 . . . . . . 7 𝑥 ∈ V
9 eqid 2609 . . . . . . . 8 (𝑅s 𝑥) = (𝑅s 𝑥)
109, 2ressbas 15703 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥)))
118, 10ax-mp 5 . . . . . 6 (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑅s 𝑥))
12 eqid 2609 . . . . . . . 8 (𝑂s 𝑥) = (𝑂s 𝑥)
1312, 3ressbas 15703 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥)))
148, 13ax-mp 5 . . . . . 6 (𝑥 ∩ (Base‘𝑅)) = (Base‘(𝑂s 𝑥))
1511, 14eqtr3i 2633 . . . . 5 (Base‘(𝑅s 𝑥)) = (Base‘(𝑂s 𝑥))
169, 4ressplusg 15764 . . . . . . 7 (𝑥 ∈ V → (+g𝑅) = (+g‘(𝑅s 𝑥)))
1712, 5ressplusg 15764 . . . . . . 7 (𝑥 ∈ V → (+g𝑅) = (+g‘(𝑂s 𝑥)))
1816, 17eqtr3d 2645 . . . . . 6 (𝑥 ∈ V → (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥)))
198, 18ax-mp 5 . . . . 5 (+g‘(𝑅s 𝑥)) = (+g‘(𝑂s 𝑥))
2015, 19grpprop 17207 . . . 4 ((𝑅s 𝑥) ∈ Grp ↔ (𝑂s 𝑥) ∈ Grp)
216, 7, 203anbi123i 1243 . . 3 ((𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp))
222issubg 17363 . . 3 (𝑥 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑅s 𝑥) ∈ Grp))
233issubg 17363 . . 3 (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑂 ∈ Grp ∧ 𝑥 ⊆ (Base‘𝑅) ∧ (𝑂s 𝑥) ∈ Grp))
2421, 22, 233bitr4i 290 . 2 (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))
2524eqriv 2606 1 (SubGrp‘𝑅) = (SubGrp‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  w3a 1030   = wceq 1474  wcel 1976  Vcvv 3172  cin 3538  wss 3539  cfv 5790  (class class class)co 6527  Basecbs 15641  s cress 15642  +gcplusg 15714  Grpcgrp 17191  SubGrpcsubg 17357  opprcoppr 18391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-0g 15871  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-grp 17194  df-subg 17360  df-oppr 18392
This theorem is referenced by:  opprsubrg  18570
  Copyright terms: Public domain W3C validator