Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabbidv Structured version   Visualization version   GIF version

Theorem oprabbidv 6674
 Description: Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.)
Hypothesis
Ref Expression
oprabbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
oprabbidv (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
Distinct variable groups:   𝑥,𝑧,𝜑   𝑦,𝑧,𝜑
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem oprabbidv
StepHypRef Expression
1 nfv 1840 . 2 𝑥𝜑
2 nfv 1840 . 2 𝑦𝜑
3 nfv 1840 . 2 𝑧𝜑
4 oprabbidv.1 . 2 (𝜑 → (𝜓𝜒))
51, 2, 3, 4oprabbid 6673 1 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480  {coprab 6616 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-oprab 6619 This theorem is referenced by:  oprabbii  6675  mpt2eq123dva  6681  mpt2eq3dva  6684  resoprab2  6722  erovlem  7803  joinfval  16941  meetfval  16955  odumeet  17080  odujoin  17082  mppsval  31230  csbmpt22g  32848  unceq  33057  uncf  33059  unccur  33063
 Copyright terms: Public domain W3C validator