MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabss Structured version   Visualization version   GIF version

Theorem oprabss 6731
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
Assertion
Ref Expression
oprabss {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem oprabss
StepHypRef Expression
1 reloprab 6687 . . 3 Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
2 relssdmrn 5644 . . 3 (Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
31, 2ax-mp 5 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
4 reldmoprab 6730 . . . 4 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
5 df-rel 5111 . . . 4 (Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
64, 5mpbi 220 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
7 ssv 3617 . . 3 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ V
8 xpss12 5215 . . 3 ((dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) ∧ ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ V) → (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ⊆ ((V × V) × V))
96, 7, 8mp2an 707 . 2 (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ⊆ ((V × V) × V)
103, 9sstri 3604 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3195  wss 3567   × cxp 5102  dom cdm 5104  ran crn 5105  Rel wrel 5109  {coprab 6636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-xp 5110  df-rel 5111  df-cnv 5112  df-dm 5114  df-rn 5115  df-oprab 6639
This theorem is referenced by:  elmpps  31444
  Copyright terms: Public domain W3C validator