![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opropabco | Structured version Visualization version GIF version |
Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
Ref | Expression |
---|---|
opropabco.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) |
opropabco.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) |
opropabco.3 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} |
opropabco.4 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} |
Ref | Expression |
---|---|
opropabco | ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opropabco.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) | |
2 | opropabco.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) | |
3 | opelxpi 5182 | . . 3 ⊢ ((𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 〈𝐵, 𝐶〉 ∈ (𝑅 × 𝑆)) | |
4 | 1, 2, 3 | syl2anc 694 | . 2 ⊢ (𝑥 ∈ 𝐴 → 〈𝐵, 𝐶〉 ∈ (𝑅 × 𝑆)) |
5 | opropabco.3 | . 2 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} | |
6 | opropabco.4 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} | |
7 | df-ov 6693 | . . . . . 6 ⊢ (𝐵𝑀𝐶) = (𝑀‘〈𝐵, 𝐶〉) | |
8 | 7 | eqeq2i 2663 | . . . . 5 ⊢ (𝑦 = (𝐵𝑀𝐶) ↔ 𝑦 = (𝑀‘〈𝐵, 𝐶〉)) |
9 | 8 | anbi2i 730 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))) |
10 | 9 | opabbii 4750 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))} |
11 | 6, 10 | eqtri 2673 | . 2 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))} |
12 | 4, 5, 11 | fnopabco 33647 | 1 ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 〈cop 4216 {copab 4745 × cxp 5141 ∘ ccom 5147 Fn wfn 5921 ‘cfv 5926 (class class class)co 6690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |