Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprres Structured version   Visualization version   GIF version

Theorem oprres 6799
 Description: The restriction of an operation is an operation. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.)
Hypotheses
Ref Expression
oprres.v ((𝜑𝑥𝑌𝑦𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
oprres.s (𝜑𝑌𝑋)
oprres.f (𝜑𝐹:(𝑌 × 𝑌)⟶𝑅)
oprres.g (𝜑𝐺:(𝑋 × 𝑋)⟶𝑆)
Assertion
Ref Expression
oprres (𝜑𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem oprres
StepHypRef Expression
1 oprres.v . . . . . 6 ((𝜑𝑥𝑌𝑦𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
213expb 1265 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
3 ovres 6797 . . . . . 6 ((𝑥𝑌𝑦𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦))
43adantl 482 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦))
52, 4eqtr4d 2658 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
65ralrimivva 2970 . . 3 (𝜑 → ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
7 eqid 2621 . . 3 (𝑌 × 𝑌) = (𝑌 × 𝑌)
86, 7jctil 560 . 2 (𝜑 → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))
9 oprres.f . . . 4 (𝜑𝐹:(𝑌 × 𝑌)⟶𝑅)
109ffnd 6044 . . 3 (𝜑𝐹 Fn (𝑌 × 𝑌))
11 oprres.g . . . . 5 (𝜑𝐺:(𝑋 × 𝑋)⟶𝑆)
1211ffnd 6044 . . . 4 (𝜑𝐺 Fn (𝑋 × 𝑋))
13 oprres.s . . . . 5 (𝜑𝑌𝑋)
14 xpss12 5223 . . . . 5 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1513, 13, 14syl2anc 693 . . . 4 (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
16 fnssres 6002 . . . 4 ((𝐺 Fn (𝑋 × 𝑋) ∧ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
1712, 15, 16syl2anc 693 . . 3 (𝜑 → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
18 eqfnov 6763 . . 3 ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
1910, 17, 18syl2anc 693 . 2 (𝜑 → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
208, 19mpbird 247 1 (𝜑𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1037   = wceq 1482   ∈ wcel 1989  ∀wral 2911   ⊆ wss 3572   × cxp 5110   ↾ cres 5114   Fn wfn 5881  ⟶wf 5882  (class class class)co 6647 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-fv 5894  df-ov 6650 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator