MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtos Structured version   Visualization version   GIF version

Theorem opsrtos 20194
Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrso.i (𝜑𝐼𝑉)
opsrso.r (𝜑𝑅 ∈ Toset)
opsrso.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrso.w (𝜑𝑇 We 𝐼)
Assertion
Ref Expression
opsrtos (𝜑𝑂 ∈ Toset)

Proof of Theorem opsrtos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrso.o . 2 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
2 opsrso.i . 2 (𝜑𝐼𝑉)
3 opsrso.r . 2 (𝜑𝑅 ∈ Toset)
4 opsrso.t . 2 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
5 opsrso.w . 2 (𝜑𝑇 We 𝐼)
6 eqid 2818 . 2 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
7 eqid 2818 . 2 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
8 eqid 2818 . 2 (lt‘𝑅) = (lt‘𝑅)
9 eqid 2818 . 2 (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼)
10 eqid 2818 . 2 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
11 biid 262 . 2 (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))))
12 eqid 2818 . 2 (le‘𝑂) = (le‘𝑂)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12opsrtoslem2 20193 1 (𝜑𝑂 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  {crab 3139  wss 3933   class class class wbr 5057   We wwe 5506   × cxp 5546  ccnv 5547  cima 5551  cfv 6348  (class class class)co 7145  m cmap 8395  Fincfn 8497  cn 11626  0cn0 11885  Basecbs 16471  lecple 16560  ltcplt 17539  Tosetctos 17631   mPwSer cmps 20059   <bag cltb 20062   ordPwSer copws 20063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-seqom 8073  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-oexp 8097  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-oi 8962  df-cnf 9113  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-tset 16572  df-ple 16573  df-proset 17526  df-poset 17544  df-plt 17556  df-toset 17632  df-psr 20064  df-ltbag 20067  df-opsr 20068
This theorem is referenced by:  opsrso  20195  psr1tos  20285
  Copyright terms: Public domain W3C validator