MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthg Structured version   Visualization version   GIF version

Theorem opthg 4770
Description: Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem opthg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4238 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
21eqeq1d 2516 . . 3 (𝑥 = 𝐴 → (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩))
3 eqeq1 2518 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐶𝐴 = 𝐶))
43anbi1d 736 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐶𝑦 = 𝐷) ↔ (𝐴 = 𝐶𝑦 = 𝐷)))
52, 4bibi12d 333 . 2 (𝑥 = 𝐴 → ((⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷)) ↔ (⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝑦 = 𝐷))))
6 opeq2 4239 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
76eqeq1d 2516 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩))
8 eqeq1 2518 . . . 4 (𝑦 = 𝐵 → (𝑦 = 𝐷𝐵 = 𝐷))
98anbi2d 735 . . 3 (𝑦 = 𝐵 → ((𝐴 = 𝐶𝑦 = 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
107, 9bibi12d 333 . 2 (𝑦 = 𝐵 → ((⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝑦 = 𝐷)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))))
11 vex 3080 . . 3 𝑥 ∈ V
12 vex 3080 . . 3 𝑦 ∈ V
1311, 12opth 4769 . 2 (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷))
145, 10, 13vtocl2g 3147 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1938  cop 4034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pr 4732
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-rab 2809  df-v 3079  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035
This theorem is referenced by:  opth1g  4771  opthg2  4772  opthneg  4774  otthg  4778  oteqex  4787  s111  13105  embedsetcestrclem  16510  symg2bas  17531  frgpnabllem1  18004  frgpnabllem2  18005  mat1dimbas  19998  el2wlkonotot0  26138  dvheveccl  35294  hoidmv1le  39378
  Copyright terms: Public domain W3C validator