MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orass Structured version   Visualization version   GIF version

Theorem orass 546
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
orass (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem orass
StepHypRef Expression
1 orcom 402 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑𝜓)))
2 or12 545 . 2 ((𝜒 ∨ (𝜑𝜓)) ↔ (𝜑 ∨ (𝜒𝜓)))
3 orcom 402 . . 3 ((𝜒𝜓) ↔ (𝜓𝜒))
43orbi2i 541 . 2 ((𝜑 ∨ (𝜒𝜓)) ↔ (𝜑 ∨ (𝜓𝜒)))
51, 2, 43bitri 286 1 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  pm2.31  547  pm2.32  548  or32  549  or4  550  3orass  1039  axi12  2599  unass  3748  tppreqb  4305  ltxr  11893  lcmass  15251  plydivex  23956  disjxpin  29246  impor  33512  ifpim123g  37326
  Copyright terms: Public domain W3C validator