![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 329 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
3 | df-or 384 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
4 | df-or 384 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 303 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 |
This theorem is referenced by: orbi1d 739 orbi12d 746 eueq2 3413 sbc2or 3477 r19.44zv 4102 rexprg 4267 rextpg 4269 swopolem 5073 poleloe 5562 elsucg 5830 elsuc2g 5831 brdifun 7816 brwdom 8513 isfin1a 9152 elgch 9482 suplem2pr 9913 axlttri 10147 mulcan1g 10718 elznn0 11430 elznn 11431 zindd 11516 rpneg 11901 dfle2 12018 fzm1 12458 fzosplitsni 12619 hashv01gt1 13173 zeo5 15127 bitsf1 15215 lcmval 15352 lcmneg 15363 lcmass 15374 isprm6 15473 infpn2 15664 irredmul 18755 domneq0 19345 znfld 19957 quotval 24092 plydivlem4 24096 plydivex 24097 aalioulem2 24133 aalioulem5 24136 aalioulem6 24137 aaliou 24138 aaliou2 24140 aaliou2b 24141 isinag 25774 axcontlem7 25895 hashecclwwlkn1 27041 eliccioo 29767 tlt2 29792 sibfof 30530 ballotlemfc0 30682 ballotlemfcc 30683 seglelin 32348 lineunray 32379 topdifinfeq 33328 mblfinlem2 33577 pridl 33966 maxidlval 33968 ispridlc 33999 pridlc 34000 dmnnzd 34004 lcfl7N 37107 aomclem8 37948 orbi1r 39033 iccpartgtl 41687 iccpartleu 41689 lindslinindsimp2lem5 42576 lindslinindsimp2 42577 |
Copyright terms: Public domain | W3C validator |