MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta Structured version   Visualization version   GIF version

Theorem orbsta 18442
Description: The Orbit-Stabilizer theorem. The mapping 𝐹 is a bijection from the cosets of the stabilizer subgroup of 𝐴 to the orbit of 𝐴. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta.r = (𝐺 ~QG 𝐻)
orbsta.f 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
orbsta.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
orbsta (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂)
Distinct variable groups:   𝑔,𝑘,𝑥,𝑦,   𝑢,𝑔, ,𝑘,𝑥,𝑦   𝑥,𝐻,𝑦   𝐴,𝑔,𝑘,𝑢,𝑥,𝑦   𝑔,𝐺,𝑘,𝑢,𝑥,𝑦   𝑔,𝑋,𝑘,𝑢,𝑥,𝑦   𝑘,𝑂   𝑔,𝑌,𝑘,𝑥,𝑦
Allowed substitution hints:   (𝑢)   𝐹(𝑥,𝑦,𝑢,𝑔,𝑘)   𝐻(𝑢,𝑔,𝑘)   𝑂(𝑥,𝑦,𝑢,𝑔)   𝑌(𝑢)

Proof of Theorem orbsta
Dummy variables 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.1 . . . . 5 𝑋 = (Base‘𝐺)
2 gasta.2 . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
3 orbsta.r . . . . 5 = (𝐺 ~QG 𝐻)
4 orbsta.f . . . . 5 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
51, 2, 3, 4orbstafun 18440 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
6 simpr 487 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐴𝑌)
76adantr 483 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝐴𝑌)
81gaf 18424 . . . . . . . . . 10 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
98adantr 483 . . . . . . . . 9 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → :(𝑋 × 𝑌)⟶𝑌)
109adantr 483 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → :(𝑋 × 𝑌)⟶𝑌)
11 simpr 487 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝑘𝑋)
1210, 11, 7fovrnd 7319 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → (𝑘 𝐴) ∈ 𝑌)
13 eqid 2821 . . . . . . . 8 (𝑘 𝐴) = (𝑘 𝐴)
14 oveq1 7162 . . . . . . . . . 10 ( = 𝑘 → ( 𝐴) = (𝑘 𝐴))
1514eqeq1d 2823 . . . . . . . . 9 ( = 𝑘 → (( 𝐴) = (𝑘 𝐴) ↔ (𝑘 𝐴) = (𝑘 𝐴)))
1615rspcev 3622 . . . . . . . 8 ((𝑘𝑋 ∧ (𝑘 𝐴) = (𝑘 𝐴)) → ∃𝑋 ( 𝐴) = (𝑘 𝐴))
1711, 13, 16sylancl 588 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → ∃𝑋 ( 𝐴) = (𝑘 𝐴))
18 orbsta.o . . . . . . . 8 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
1918gaorb 18436 . . . . . . 7 (𝐴𝑂(𝑘 𝐴) ↔ (𝐴𝑌 ∧ (𝑘 𝐴) ∈ 𝑌 ∧ ∃𝑋 ( 𝐴) = (𝑘 𝐴)))
207, 12, 17, 19syl3anbrc 1339 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝐴𝑂(𝑘 𝐴))
21 ovex 7188 . . . . . . 7 (𝑘 𝐴) ∈ V
22 elecg 8331 . . . . . . 7 (((𝑘 𝐴) ∈ V ∧ 𝐴𝑌) → ((𝑘 𝐴) ∈ [𝐴]𝑂𝐴𝑂(𝑘 𝐴)))
2321, 7, 22sylancr 589 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → ((𝑘 𝐴) ∈ [𝐴]𝑂𝐴𝑂(𝑘 𝐴)))
2420, 23mpbird 259 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → (𝑘 𝐴) ∈ [𝐴]𝑂)
251, 2gastacl 18438 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
261, 3eqger 18329 . . . . . 6 (𝐻 ∈ (SubGrp‘𝐺) → Er 𝑋)
2725, 26syl 17 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Er 𝑋)
281fvexi 6683 . . . . . 6 𝑋 ∈ V
2928a1i 11 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝑋 ∈ V)
304, 24, 27, 29qliftf 8384 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (Fun 𝐹𝐹:(𝑋 / )⟶[𝐴]𝑂))
315, 30mpbid 234 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )⟶[𝐴]𝑂)
32 eqid 2821 . . . . 5 (𝑋 / ) = (𝑋 / )
33 fveqeq2 6678 . . . . . . 7 ([𝑧] = 𝑎 → ((𝐹‘[𝑧] ) = (𝐹𝑏) ↔ (𝐹𝑎) = (𝐹𝑏)))
34 eqeq1 2825 . . . . . . 7 ([𝑧] = 𝑎 → ([𝑧] = 𝑏𝑎 = 𝑏))
3533, 34imbi12d 347 . . . . . 6 ([𝑧] = 𝑎 → (((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏) ↔ ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
3635ralbidv 3197 . . . . 5 ([𝑧] = 𝑎 → (∀𝑏 ∈ (𝑋 / )((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏) ↔ ∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
37 fveq2 6669 . . . . . . . . 9 ([𝑤] = 𝑏 → (𝐹‘[𝑤] ) = (𝐹𝑏))
3837eqeq2d 2832 . . . . . . . 8 ([𝑤] = 𝑏 → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ (𝐹‘[𝑧] ) = (𝐹𝑏)))
39 eqeq2 2833 . . . . . . . 8 ([𝑤] = 𝑏 → ([𝑧] = [𝑤] ↔ [𝑧] = 𝑏))
4038, 39imbi12d 347 . . . . . . 7 ([𝑤] = 𝑏 → (((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ) ↔ ((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏)))
411, 2, 3, 4orbstaval 18441 . . . . . . . . . . . 12 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) → (𝐹‘[𝑧] ) = (𝑧 𝐴))
4241adantrr 715 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘[𝑧] ) = (𝑧 𝐴))
431, 2, 3, 4orbstaval 18441 . . . . . . . . . . . 12 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → (𝐹‘[𝑤] ) = (𝑤 𝐴))
4443adantrl 714 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘[𝑤] ) = (𝑤 𝐴))
4542, 44eqeq12d 2837 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ (𝑧 𝐴) = (𝑤 𝐴)))
461, 2, 3gastacos 18439 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧 𝑤 ↔ (𝑧 𝐴) = (𝑤 𝐴)))
4727adantr 483 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → Er 𝑋)
48 simprl 769 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
4947, 48erth 8337 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧 𝑤 ↔ [𝑧] = [𝑤] ))
5045, 46, 493bitr2d 309 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ [𝑧] = [𝑤] ))
5150biimpd 231 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ))
5251anassrs 470 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ))
5332, 40, 52ectocld 8363 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) ∧ 𝑏 ∈ (𝑋 / )) → ((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏))
5453ralrimiva 3182 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) → ∀𝑏 ∈ (𝑋 / )((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏))
5532, 36, 54ectocld 8363 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑎 ∈ (𝑋 / )) → ∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
5655ralrimiva 3182 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀𝑎 ∈ (𝑋 / )∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
57 dff13 7012 . . 3 (𝐹:(𝑋 / )–1-1→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )⟶[𝐴]𝑂 ∧ ∀𝑎 ∈ (𝑋 / )∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
5831, 56, 57sylanbrc 585 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1→[𝐴]𝑂)
59 vex 3497 . . . . . . . . 9 ∈ V
60 elecg 8331 . . . . . . . . 9 (( ∈ V ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂𝐴𝑂))
6159, 6, 60sylancr 589 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂𝐴𝑂))
6218gaorb 18436 . . . . . . . 8 (𝐴𝑂 ↔ (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = ))
6361, 62syl6bb 289 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂 ↔ (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = )))
6463biimpa 479 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = ))
6564simp3d 1140 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → ∃𝑤𝑋 (𝑤 𝐴) = )
663ovexi 7189 . . . . . . . . . 10 ∈ V
6766ecelqsi 8352 . . . . . . . . 9 (𝑤𝑋 → [𝑤] ∈ (𝑋 / ))
6843eqcomd 2827 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → (𝑤 𝐴) = (𝐹‘[𝑤] ))
69 fveq2 6669 . . . . . . . . . 10 (𝑧 = [𝑤] → (𝐹𝑧) = (𝐹‘[𝑤] ))
7069rspceeqv 3637 . . . . . . . . 9 (([𝑤] ∈ (𝑋 / ) ∧ (𝑤 𝐴) = (𝐹‘[𝑤] )) → ∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧))
7167, 68, 70syl2an2 684 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → ∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧))
72 eqeq1 2825 . . . . . . . . 9 ((𝑤 𝐴) = → ((𝑤 𝐴) = (𝐹𝑧) ↔ = (𝐹𝑧)))
7372rexbidv 3297 . . . . . . . 8 ((𝑤 𝐴) = → (∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧) ↔ ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7471, 73syl5ibcom 247 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → ((𝑤 𝐴) = → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7574rexlimdva 3284 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (∃𝑤𝑋 (𝑤 𝐴) = → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7675imp 409 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∃𝑤𝑋 (𝑤 𝐴) = ) → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
7765, 76syldan 593 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
7877ralrimiva 3182 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀ ∈ [ 𝐴]𝑂𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
79 dffo3 6867 . . 3 (𝐹:(𝑋 / )–onto→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )⟶[𝐴]𝑂 ∧ ∀ ∈ [ 𝐴]𝑂𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
8031, 78, 79sylanbrc 585 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–onto→[𝐴]𝑂)
81 df-f1o 6361 . 2 (𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )–1-1→[𝐴]𝑂𝐹:(𝑋 / )–onto→[𝐴]𝑂))
8258, 80, 81sylanbrc 585 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  {cpr 4568  cop 4572   class class class wbr 5065  {copab 5127  cmpt 5145   × cxp 5552  ran crn 5555  Fun wfun 6348  wf 6350  1-1wf1 6351  ontowfo 6352  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155   Er wer 8285  [cec 8286   / cqs 8287  Basecbs 16482  SubGrpcsubg 18272   ~QG cqg 18274   GrpAct cga 18418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-subg 18275  df-eqg 18277  df-ga 18419
This theorem is referenced by:  orbsta2  18443
  Copyright terms: Public domain W3C validator