MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbstafun Structured version   Visualization version   GIF version

Theorem orbstafun 18435
Description: Existence and uniqueness for the function of orbsta 18437. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta.r = (𝐺 ~QG 𝐻)
orbsta.f 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
Assertion
Ref Expression
orbstafun (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
Distinct variable groups:   ,𝑘   𝑢,𝑘,   𝐴,𝑘,𝑢   𝑘,𝐺,𝑢   𝑘,𝑋,𝑢   𝑘,𝑌
Allowed substitution hints:   (𝑢)   𝐹(𝑢,𝑘)   𝐻(𝑢,𝑘)   𝑌(𝑢)

Proof of Theorem orbstafun
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 orbsta.f . 2 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
2 ovexd 7185 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → (𝑘 𝐴) ∈ V)
3 gasta.1 . . . 4 𝑋 = (Base‘𝐺)
4 gasta.2 . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
53, 4gastacl 18433 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
6 orbsta.r . . . 4 = (𝐺 ~QG 𝐻)
73, 6eqger 18324 . . 3 (𝐻 ∈ (SubGrp‘𝐺) → Er 𝑋)
85, 7syl 17 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Er 𝑋)
93fvexi 6679 . . 3 𝑋 ∈ V
109a1i 11 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝑋 ∈ V)
11 oveq1 7157 . 2 (𝑘 = → (𝑘 𝐴) = ( 𝐴))
12 simpr 487 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → 𝑘 )
13 subgrcl 18278 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
143subgss 18274 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
15 eqid 2821 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
16 eqid 2821 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
173, 15, 16, 6eqgval 18323 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐻𝑋) → (𝑘 ↔ (𝑘𝑋𝑋 ∧ (((invg𝐺)‘𝑘)(+g𝐺)) ∈ 𝐻)))
1813, 14, 17syl2anc 586 . . . . . . . 8 (𝐻 ∈ (SubGrp‘𝐺) → (𝑘 ↔ (𝑘𝑋𝑋 ∧ (((invg𝐺)‘𝑘)(+g𝐺)) ∈ 𝐻)))
195, 18syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (𝑘 ↔ (𝑘𝑋𝑋 ∧ (((invg𝐺)‘𝑘)(+g𝐺)) ∈ 𝐻)))
2019biimpa 479 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → (𝑘𝑋𝑋 ∧ (((invg𝐺)‘𝑘)(+g𝐺)) ∈ 𝐻))
2120simp1d 1138 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → 𝑘𝑋)
2220simp2d 1139 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → 𝑋)
2321, 22jca 514 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → (𝑘𝑋𝑋))
243, 4, 6gastacos 18434 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑘𝑋𝑋)) → (𝑘 ↔ (𝑘 𝐴) = ( 𝐴)))
2523, 24syldan 593 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → (𝑘 ↔ (𝑘 𝐴) = ( 𝐴)))
2612, 25mpbid 234 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → (𝑘 𝐴) = ( 𝐴))
271, 2, 8, 10, 11, 26qliftfund 8377 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3495  wss 3936  cop 4567   class class class wbr 5059  cmpt 5139  ran crn 5551  Fun wfun 6344  cfv 6350  (class class class)co 7150   Er wer 8280  [cec 8281  Basecbs 16477  +gcplusg 16559  Grpcgrp 18097  invgcminusg 18098  SubGrpcsubg 18267   ~QG cqg 18269   GrpAct cga 18413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-subg 18270  df-eqg 18272  df-ga 18414
This theorem is referenced by:  orbstaval  18436  orbsta  18437
  Copyright terms: Public domain W3C validator