Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordelordALTVD Structured version   Visualization version   GIF version

Theorem ordelordALTVD 41208
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 6215 using the Axiom of Regularity indirectly through dford2 9085. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 40878 is ordelordALTVD 41208 without virtual deductions and was automatically derived from ordelordALTVD 41208 using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE_WITH *" command.
1:: (   (Ord 𝐴𝐵𝐴)   ▶   (Ord 𝐴 𝐵𝐴)   )
2:1: (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐴   )
3:1: (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
4:2: (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐴   )
5:2: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
6:4,3: (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
7:6,6,5: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐵 𝑦𝐵(𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
8:: ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
9:8: 𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
10:9: 𝑦𝐴((𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
11:10: (∀𝑦𝐴(𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
12:11: 𝑥(∀𝑦𝐴(𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
13:12: 𝑥𝐴(∀𝑦𝐴(𝑥𝑦 𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
14:13: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥 𝑥 = 𝑦))
15:14,5: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
16:4,15,3: (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐵   )
17:16,7: (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐵   )
qed:17: ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordelordALTVD ((Ord 𝐴𝐵𝐴) → Ord 𝐵)

Proof of Theorem ordelordALTVD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 40915 . . . . . 6 (   (Ord 𝐴𝐵𝐴)   ▶   (Ord 𝐴𝐵𝐴)   )
2 simpl 485 . . . . . 6 ((Ord 𝐴𝐵𝐴) → Ord 𝐴)
31, 2e1a 40968 . . . . 5 (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐴   )
4 ordtr 6207 . . . . 5 (Ord 𝐴 → Tr 𝐴)
53, 4e1a 40968 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐴   )
6 dford2 9085 . . . . . . 7 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
76simprbi 499 . . . . . 6 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
83, 7e1a 40968 . . . . 5 (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
9 3orcomb 1090 . . . . . . . . . . 11 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
109ax-gen 1796 . . . . . . . . . 10 𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
11 alral 3156 . . . . . . . . . 10 (∀𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → ∀𝑦𝐴 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1210, 11e0a 41113 . . . . . . . . 9 𝑦𝐴 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
13 ralbi 3169 . . . . . . . . 9 (∀𝑦𝐴 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1412, 13e0a 41113 . . . . . . . 8 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
1514ax-gen 1796 . . . . . . 7 𝑥(∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
16 alral 3156 . . . . . . 7 (∀𝑥(∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → ∀𝑥𝐴 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1715, 16e0a 41113 . . . . . 6 𝑥𝐴 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
18 ralbi 3169 . . . . . 6 (∀𝑥𝐴 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1917, 18e0a 41113 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
208, 19e1bi 40970 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
21 simpr 487 . . . . 5 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
221, 21e1a 40968 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
23 tratrb 40877 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
24233exp 1115 . . . 4 (Tr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → (𝐵𝐴 → Tr 𝐵)))
255, 20, 22, 24e111 41015 . . 3 (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐵   )
26 trss 5183 . . . . 5 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
275, 22, 26e11 41029 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
28 ssralv2 40872 . . . . 5 ((𝐵𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2928ex 415 . . . 4 (𝐵𝐴 → (𝐵𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))))
3027, 27, 8, 29e111 41015 . . 3 (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
31 dford2 9085 . . . 4 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
3231simplbi2 503 . . 3 (Tr 𝐵 → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → Ord 𝐵))
3325, 30, 32e11 41029 . 2 (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐵   )
3433in1 40912 1 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1082  wal 1535   = wceq 1537  wcel 2114  wral 3140  wss 3938  Tr wtr 5174  Ord word 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463  ax-reg 9058
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-ord 6196  df-vd1 40911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator