![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordin | Structured version Visualization version GIF version |
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.) |
Ref | Expression |
---|---|
ordin | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 5898 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | ordtr 5898 | . . 3 ⊢ (Ord 𝐵 → Tr 𝐵) | |
3 | trin 4915 | . . 3 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) | |
4 | 1, 2, 3 | syl2an 495 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴 ∩ 𝐵)) |
5 | inss2 3977 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
6 | trssord 5901 | . . 3 ⊢ ((Tr (𝐴 ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
7 | 5, 6 | mp3an2 1561 | . 2 ⊢ ((Tr (𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
8 | 4, 7 | sylancom 704 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∩ cin 3714 ⊆ wss 3715 Tr wtr 4904 Ord word 5883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-v 3342 df-in 3722 df-ss 3729 df-uni 4589 df-tr 4905 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-ord 5887 |
This theorem is referenced by: onin 5915 ordtri3or 5916 ordelinel 5986 ordelinelOLD 5987 smores 7619 smores2 7621 ordtypelem5 8594 ordtypelem7 8596 |
Copyright terms: Public domain | W3C validator |