MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpwsuc Structured version   Visualization version   GIF version

Theorem ordpwsuc 7519
Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.)
Assertion
Ref Expression
ordpwsuc (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)

Proof of Theorem ordpwsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 4166 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ On))
2 velpw 4543 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32anbi2ci 624 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
41, 3bitri 276 . . 3 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
5 ordsssuc 6270 . . . . . 6 ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥𝐴𝑥 ∈ suc 𝐴))
65expcom 414 . . . . 5 (Ord 𝐴 → (𝑥 ∈ On → (𝑥𝐴𝑥 ∈ suc 𝐴)))
76pm5.32d 577 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴)))
8 simpr 485 . . . . 5 ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ suc 𝐴)
9 ordsuc 7518 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
10 ordelon 6208 . . . . . . . 8 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → 𝑥 ∈ On)
1110ex 413 . . . . . . 7 (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
129, 11sylbi 218 . . . . . 6 (Ord 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
1312ancrd 552 . . . . 5 (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴)))
148, 13impbid2 227 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) ↔ 𝑥 ∈ suc 𝐴))
157, 14bitrd 280 . . 3 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ 𝑥 ∈ suc 𝐴))
164, 15syl5bb 284 . 2 (Ord 𝐴 → (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ 𝑥 ∈ suc 𝐴))
1716eqrdv 2816 1 (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  cin 3932  wss 3933  𝒫 cpw 4535  Ord word 6183  Oncon0 6184  suc csuc 6186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-ord 6187  df-on 6188  df-suc 6190
This theorem is referenced by:  onpwsuc  7520  orduniss2  7537
  Copyright terms: Public domain W3C validator