MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucelsuc Structured version   Visualization version   GIF version

Theorem ordsucelsuc 7539
Description: Membership is inherited by successors. Generalization of Exercise 9 of [TakeutiZaring] p. 42. (Contributed by NM, 22-Jun-1998.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsucelsuc (Ord 𝐵 → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))

Proof of Theorem ordsucelsuc
StepHypRef Expression
1 simpl 485 . . 3 ((Ord 𝐵𝐴𝐵) → Ord 𝐵)
2 ordelord 6215 . . 3 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
31, 2jca 514 . 2 ((Ord 𝐵𝐴𝐵) → (Ord 𝐵 ∧ Ord 𝐴))
4 simpl 485 . . 3 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐵)
5 ordsuc 7531 . . . 4 (Ord 𝐵 ↔ Ord suc 𝐵)
6 ordelord 6215 . . . . 5 ((Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord suc 𝐴)
7 ordsuc 7531 . . . . 5 (Ord 𝐴 ↔ Ord suc 𝐴)
86, 7sylibr 236 . . . 4 ((Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴)
95, 8sylanb 583 . . 3 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴)
104, 9jca 514 . 2 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → (Ord 𝐵 ∧ Ord 𝐴))
11 ordsseleq 6222 . . . . . . . 8 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
127, 11sylanb 583 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1312ancoms 461 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1413adantl 484 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
15 ordsucss 7535 . . . . . . 7 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
1615ad2antrl 726 . . . . . 6 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 → suc 𝐴𝐵))
17 sucssel 6285 . . . . . . 7 (𝐴 ∈ V → (suc 𝐴𝐵𝐴𝐵))
1817adantr 483 . . . . . 6 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴𝐵𝐴𝐵))
1916, 18impbid 214 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 ↔ suc 𝐴𝐵))
20 sucexb 7526 . . . . . . 7 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
21 elsucg 6260 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2220, 21sylbi 219 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2322adantr 483 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2414, 19, 233bitr4d 313 . . . 4 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
2524ex 415 . . 3 (𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵)))
26 elex 3514 . . . . 5 (𝐴𝐵𝐴 ∈ V)
27 elex 3514 . . . . . 6 (suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V)
2827, 20sylibr 236 . . . . 5 (suc 𝐴 ∈ suc 𝐵𝐴 ∈ V)
2926, 28pm5.21ni 381 . . . 4 𝐴 ∈ V → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
3029a1d 25 . . 3 𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵)))
3125, 30pm2.61i 184 . 2 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
323, 10, 31pm5.21nd 800 1 (Ord 𝐵 → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938  Ord word 6192  suc csuc 6195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-ord 6196  df-on 6197  df-suc 6199
This theorem is referenced by:  ordsucsssuc  7540  omsucelsucb  8096  oalimcl  8188  omlimcl  8206  pssnn  8738  cantnflt  9137  cantnfp1lem3  9145  r1pw  9276  r1pwALT  9277  rankelpr  9304  rankelop  9305  rankxplim3  9312  infpssrlem4  9730  axdc3lem2  9875  axdc3lem4  9877  grur1a  10243  bnj570  32179  bnj1001  32233  nosupno  33205
  Copyright terms: Public domain W3C validator