MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucss Structured version   Visualization version   GIF version

Theorem ordsucss 7015
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))

Proof of Theorem ordsucss
StepHypRef Expression
1 ordelord 5743 . . . . 5 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
2 ordnbtwn 5814 . . . . . . . 8 (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
3 imnan 438 . . . . . . . 8 ((𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴) ↔ ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
42, 3sylibr 224 . . . . . . 7 (Ord 𝐴 → (𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴))
54adantr 481 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴))
6 ordsuc 7011 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
7 ordtri1 5754 . . . . . . 7 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
86, 7sylanb 489 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
95, 8sylibrd 249 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 → suc 𝐴𝐵))
101, 9sylan 488 . . . 4 (((Ord 𝐵𝐴𝐵) ∧ Ord 𝐵) → (𝐴𝐵 → suc 𝐴𝐵))
1110exp31 630 . . 3 (Ord 𝐵 → (𝐴𝐵 → (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))))
1211pm2.43b 55 . 2 (𝐴𝐵 → (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵)))
1312pm2.43b 55 1 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wcel 1989  wss 3572  Ord word 5720  suc csuc 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-tr 4751  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-ord 5724  df-on 5725  df-suc 5727
This theorem is referenced by:  ordelsuc  7017  ordsucelsuc  7019  orduniorsuc  7027  tfindsg2  7058  oaordi  7623  oawordeulem  7631  omeulem2  7660  oeworde  7670  oelimcl  7677  oeeui  7679  nnaordi  7695  nnawordex  7714  oaabs2  7722  omxpenlem  8058  inf3lem5  8526  cantnflt  8566  cantnflem1d  8582  cnfcom  8594  r1ordg  8638  rankr1ag  8662  cfslb2n  9087  cfsmolem  9089  fin23lem26  9144  isf32lem3  9174  ttukeylem7  9334  indpi  9726  nolesgn2ores  31809  nosupres  31837  nosupbnd1lem1  31838  nosupbnd2  31846
  Copyright terms: Public domain W3C validator