MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas Structured version   Visualization version   GIF version

Theorem ordtbas 21794
Description: In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
ordtval.4 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
Assertion
Ref Expression
ordtbas (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑥,𝑎,𝑦,𝑅,𝑏   𝑋,𝑎,𝑏,𝑥,𝑦   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem ordtbas
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5324 . . . . . 6 {𝑋} ∈ V
2 ssun2 4149 . . . . . . 7 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3 ordtval.1 . . . . . . . . . 10 𝑋 = dom 𝑅
4 ordtval.2 . . . . . . . . . 10 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
5 ordtval.3 . . . . . . . . . 10 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
63, 4, 5ordtuni 21792 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 = ({𝑋} ∪ (𝐴𝐵)))
7 dmexg 7607 . . . . . . . . . 10 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
83, 7eqeltrid 2917 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 ∈ V)
96, 8eqeltrrd 2914 . . . . . . . 8 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
10 uniexb 7480 . . . . . . . 8 (({𝑋} ∪ (𝐴𝐵)) ∈ V ↔ ({𝑋} ∪ (𝐴𝐵)) ∈ V)
119, 10sylibr 236 . . . . . . 7 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
12 ssexg 5220 . . . . . . 7 (((𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵)) ∧ ({𝑋} ∪ (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
132, 11, 12sylancr 589 . . . . . 6 (𝑅 ∈ TosetRel → (𝐴𝐵) ∈ V)
14 elfiun 8888 . . . . . 6 (({𝑋} ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) ↔ (𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛))))
151, 13, 14sylancr 589 . . . . 5 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) ↔ (𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛))))
16 fisn 8885 . . . . . . . . 9 (fi‘{𝑋}) = {𝑋}
17 ssun1 4148 . . . . . . . . 9 {𝑋} ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
1816, 17eqsstri 4001 . . . . . . . 8 (fi‘{𝑋}) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
1918sseli 3963 . . . . . . 7 (𝑧 ∈ (fi‘{𝑋}) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
2019a1i 11 . . . . . 6 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘{𝑋}) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
21 ordtval.4 . . . . . . . . 9 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
223, 4, 5, 21ordtbas2 21793 . . . . . . . 8 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
23 ssun2 4149 . . . . . . . 8 ((𝐴𝐵) ∪ 𝐶) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
2422, 23eqsstrdi 4021 . . . . . . 7 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
2524sseld 3966 . . . . . 6 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴𝐵)) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
26 fipwuni 8884 . . . . . . . . . . . . . . 15 (fi‘(𝐴𝐵)) ⊆ 𝒫 (𝐴𝐵)
2726sseli 3963 . . . . . . . . . . . . . 14 (𝑛 ∈ (fi‘(𝐴𝐵)) → 𝑛 ∈ 𝒫 (𝐴𝐵))
2827elpwid 4553 . . . . . . . . . . . . 13 (𝑛 ∈ (fi‘(𝐴𝐵)) → 𝑛 (𝐴𝐵))
2928ad2antll 727 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛 (𝐴𝐵))
302unissi 4855 . . . . . . . . . . . . . 14 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3130, 6sseqtrrid 4020 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → (𝐴𝐵) ⊆ 𝑋)
3231adantr 483 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝐴𝐵) ⊆ 𝑋)
3329, 32sstrd 3977 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛𝑋)
34 simprl 769 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 ∈ (fi‘{𝑋}))
3534, 16eleqtrdi 2923 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 ∈ {𝑋})
36 elsni 4578 . . . . . . . . . . . 12 (𝑚 ∈ {𝑋} → 𝑚 = 𝑋)
3735, 36syl 17 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 = 𝑋)
3833, 37sseqtrrd 4008 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛𝑚)
39 sseqin2 4192 . . . . . . . . . 10 (𝑛𝑚 ↔ (𝑚𝑛) = 𝑛)
4038, 39sylib 220 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑚𝑛) = 𝑛)
4124sselda 3967 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ 𝑛 ∈ (fi‘(𝐴𝐵))) → 𝑛 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
4241adantrl 714 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
4340, 42eqeltrd 2913 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑚𝑛) ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
44 eleq1 2900 . . . . . . . 8 (𝑧 = (𝑚𝑛) → (𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)) ↔ (𝑚𝑛) ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4543, 44syl5ibrcom 249 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑧 = (𝑚𝑛) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4645rexlimdvva 3294 . . . . . 6 (𝑅 ∈ TosetRel → (∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4720, 25, 463jaod 1424 . . . . 5 (𝑅 ∈ TosetRel → ((𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛)) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4815, 47sylbid 242 . . . 4 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4948ssrdv 3973 . . 3 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
50 ssfii 8877 . . . . . 6 (({𝑋} ∪ (𝐴𝐵)) ∈ V → ({𝑋} ∪ (𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5111, 50syl 17 . . . . 5 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5251unssad 4163 . . . 4 (𝑅 ∈ TosetRel → {𝑋} ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
53 fiss 8882 . . . . . 6 ((({𝑋} ∪ (𝐴𝐵)) ∈ V ∧ (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))) → (fi‘(𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5411, 2, 53sylancl 588 . . . . 5 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5522, 54eqsstrrd 4006 . . . 4 (𝑅 ∈ TosetRel → ((𝐴𝐵) ∪ 𝐶) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5652, 55unssd 4162 . . 3 (𝑅 ∈ TosetRel → ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5749, 56eqssd 3984 . 2 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
58 unass 4142 . 2 (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶) = ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
5957, 58syl6eqr 2874 1 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3495  cun 3934  cin 3935  wss 3936  𝒫 cpw 4539  {csn 4561   cuni 4832   class class class wbr 5059  cmpt 5139  dom cdm 5550  ran crn 5551  cfv 6350  cmpo 7152  ficfi 8868   TosetRel ctsr 17803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-fin 8507  df-fi 8869  df-ps 17804  df-tsr 17805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator