MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthmeo Structured version   Visualization version   GIF version

Theorem ordthmeo 21518
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordthmeo.1 𝑋 = dom 𝑅
ordthmeo.2 𝑌 = dom 𝑆
Assertion
Ref Expression
ordthmeo ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)))

Proof of Theorem ordthmeo
StepHypRef Expression
1 ordthmeo.1 . . 3 𝑋 = dom 𝑅
2 ordthmeo.2 . . 3 𝑌 = dom 𝑆
31, 2ordthmeolem 21517 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)))
4 isocnv 6537 . . 3 (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → 𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋))
52, 1ordthmeolem 21517 . . . 4 ((𝑆𝑊𝑅𝑉𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
653com12 1266 . . 3 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
74, 6syl3an3 1358 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
8 ishmeo 21475 . 2 (𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)) ↔ (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ∧ 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))))
93, 7, 8sylanbrc 697 1 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  ccnv 5075  dom cdm 5076  cfv 5849   Isom wiso 5850  (class class class)co 6607  ordTopcordt 16083   Cn ccn 20941  Homeochmeo 21469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-fin 7906  df-fi 8264  df-topgen 16028  df-ordt 16085  df-top 20621  df-topon 20638  df-bases 20664  df-cn 20944  df-hmeo 21471
This theorem is referenced by:  icopnfhmeo  22655  iccpnfhmeo  22657  xrhmeo  22658  xrge0iifhmeo  29776
  Copyright terms: Public domain W3C validator