Mathbox for Chen-Pang He < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtoplem Structured version   Visualization version   GIF version

Theorem ordtoplem 32738
 Description: Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.)
Hypothesis
Ref Expression
ordtoplem.1 ( 𝐴 ∈ On → suc 𝐴𝑆)
Assertion
Ref Expression
ordtoplem (Ord 𝐴 → (𝐴 𝐴𝐴𝑆))

Proof of Theorem ordtoplem
StepHypRef Expression
1 df-ne 2931 . 2 (𝐴 𝐴 ↔ ¬ 𝐴 = 𝐴)
2 ordeleqon 7151 . . . . . 6 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
3 unon 7194 . . . . . . . . 9 On = On
43eqcomi 2767 . . . . . . . 8 On = On
5 id 22 . . . . . . . 8 (𝐴 = On → 𝐴 = On)
6 unieq 4594 . . . . . . . 8 (𝐴 = On → 𝐴 = On)
74, 5, 63eqtr4a 2818 . . . . . . 7 (𝐴 = On → 𝐴 = 𝐴)
87orim2i 541 . . . . . 6 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
92, 8sylbi 207 . . . . 5 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
109orcomd 402 . . . 4 (Ord 𝐴 → (𝐴 = 𝐴𝐴 ∈ On))
1110ord 391 . . 3 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 ∈ On))
12 orduniorsuc 7193 . . . 4 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
1312ord 391 . . 3 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
14 onuni 7156 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
15 ordtoplem.1 . . . 4 ( 𝐴 ∈ On → suc 𝐴𝑆)
16 eleq1a 2832 . . . 4 (suc 𝐴𝑆 → (𝐴 = suc 𝐴𝐴𝑆))
1714, 15, 163syl 18 . . 3 (𝐴 ∈ On → (𝐴 = suc 𝐴𝐴𝑆))
1811, 13, 17syl6c 70 . 2 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴𝑆))
191, 18syl5bi 232 1 (Ord 𝐴 → (𝐴 𝐴𝐴𝑆))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   = wceq 1630   ∈ wcel 2137   ≠ wne 2930  ∪ cuni 4586  Ord word 5881  Oncon0 5882  suc csuc 5884 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pr 5053  ax-un 7112 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-rab 3057  df-v 3340  df-sbc 3575  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-br 4803  df-opab 4863  df-tr 4903  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-ord 5885  df-on 5886  df-suc 5888 This theorem is referenced by:  ordtop  32739  ordtopconn  32742  ordtopt0  32745
 Copyright terms: Public domain W3C validator