Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtrest2NEWlem Structured version   Visualization version   GIF version

Theorem ordtrest2NEWlem 31160
Description: Lemma for ordtrest2NEW 31161. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtrest2NEW.2 (𝜑𝐾 ∈ Toset)
ordtrest2NEW.3 (𝜑𝐴𝐵)
ordtrest2NEW.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2NEWlem (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐴,𝑦,𝑣,𝑤,𝑧   𝑣,   𝑥,𝑤,𝑧,𝑦,   𝑣,𝐴,𝑤,𝑧   𝑣,𝐵,𝑤,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑣)   𝐾(𝑧,𝑤,𝑣)

Proof of Theorem ordtrest2NEWlem
StepHypRef Expression
1 inrab2 4275 . . . . 5 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) = {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧}
2 ordtrest2NEW.3 . . . . . . . 8 (𝜑𝐴𝐵)
3 sseqin2 4191 . . . . . . . 8 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
42, 3sylib 220 . . . . . . 7 (𝜑 → (𝐵𝐴) = 𝐴)
54adantr 483 . . . . . 6 ((𝜑𝑧𝐵) → (𝐵𝐴) = 𝐴)
6 rabeq 3483 . . . . . 6 ((𝐵𝐴) = 𝐴 → {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
75, 6syl 17 . . . . 5 ((𝜑𝑧𝐵) → {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
81, 7syl5eq 2868 . . . 4 ((𝜑𝑧𝐵) → ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
9 ordtNEW.l . . . . . . . . . . . . 13 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
10 fvex 6677 . . . . . . . . . . . . . 14 (le‘𝐾) ∈ V
1110inex1 5213 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
129, 11eqeltri 2909 . . . . . . . . . . . 12 ∈ V
1312inex1 5213 . . . . . . . . . . 11 ( ∩ (𝐴 × 𝐴)) ∈ V
1413a1i 11 . . . . . . . . . 10 (𝜑 → ( ∩ (𝐴 × 𝐴)) ∈ V)
15 eqid 2821 . . . . . . . . . . 11 dom ( ∩ (𝐴 × 𝐴)) = dom ( ∩ (𝐴 × 𝐴))
1615ordttopon 21795 . . . . . . . . . 10 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
1714, 16syl 17 . . . . . . . . 9 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
18 ordtrest2NEW.2 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Toset)
19 tospos 30640 . . . . . . . . . . . 12 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
20 posprs 17553 . . . . . . . . . . . 12 (𝐾 ∈ Poset → 𝐾 ∈ Proset )
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑𝐾 ∈ Proset )
22 ordtNEW.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
2322, 9prsssdm 31155 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
2421, 2, 23syl2anc 586 . . . . . . . . . 10 (𝜑 → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
2524fveq2d 6668 . . . . . . . . 9 (𝜑 → (TopOn‘dom ( ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
2617, 25eleqtrd 2915 . . . . . . . 8 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
27 toponmax 21528 . . . . . . . 8 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
2826, 27syl 17 . . . . . . 7 (𝜑𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
2928adantr 483 . . . . . 6 ((𝜑𝑧𝐵) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
30 rabid2 3381 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ↔ ∀𝑤𝐴 ¬ 𝑤 𝑧)
31 eleq1 2900 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤 𝑧} → (𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
3230, 31sylbir 237 . . . . . 6 (∀𝑤𝐴 ¬ 𝑤 𝑧 → (𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
3329, 32syl5ibcom 247 . . . . 5 ((𝜑𝑧𝐵) → (∀𝑤𝐴 ¬ 𝑤 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
34 dfrex2 3239 . . . . . . 7 (∃𝑤𝐴 𝑤 𝑧 ↔ ¬ ∀𝑤𝐴 ¬ 𝑤 𝑧)
35 breq1 5061 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 𝑧𝑥 𝑧))
3635cbvrexvw 3450 . . . . . . 7 (∃𝑤𝐴 𝑤 𝑧 ↔ ∃𝑥𝐴 𝑥 𝑧)
3734, 36bitr3i 279 . . . . . 6 (¬ ∀𝑤𝐴 ¬ 𝑤 𝑧 ↔ ∃𝑥𝐴 𝑥 𝑧)
38 ordttop 21802 . . . . . . . . . . . . 13 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
3914, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
4039adantr 483 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
41 0opn 21506 . . . . . . . . . . 11 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐵) → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4342adantr 483 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
44 eleq1 2900 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} = ∅ → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
4543, 44syl5ibrcom 249 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} = ∅ → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
46 rabn0 4338 . . . . . . . . . 10 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ ↔ ∃𝑤𝐴 ¬ 𝑤 𝑧)
47 breq1 5061 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤 𝑧𝑦 𝑧))
4847notbid 320 . . . . . . . . . . 11 (𝑤 = 𝑦 → (¬ 𝑤 𝑧 ↔ ¬ 𝑦 𝑧))
4948cbvrexvw 3450 . . . . . . . . . 10 (∃𝑤𝐴 ¬ 𝑤 𝑧 ↔ ∃𝑦𝐴 ¬ 𝑦 𝑧)
5046, 49bitri 277 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ ↔ ∃𝑦𝐴 ¬ 𝑦 𝑧)
5118ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝐾 ∈ Toset)
522ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → 𝐴𝐵)
5352sselda 3966 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝑦𝐵)
54 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝑧𝐵)
5522, 9trleile 30648 . . . . . . . . . . . . 13 ((𝐾 ∈ Toset ∧ 𝑦𝐵𝑧𝐵) → (𝑦 𝑧𝑧 𝑦))
5651, 53, 54, 55syl3anc 1367 . . . . . . . . . . . 12 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (𝑦 𝑧𝑧 𝑦))
5756ord 860 . . . . . . . . . . 11 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦 𝑧𝑧 𝑦))
58 an4 654 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥 𝑧𝑧 𝑦)))
59 ordtrest2NEW.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
60 rabss 4047 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴 ↔ ∀𝑧𝐵 ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6159, 60sylib 220 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐵 ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6261r19.21bi 3208 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐵) → ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6362an32s 650 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6463impr 457 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝑥 𝑧𝑧 𝑦))) → 𝑧𝐴)
6558, 64sylan2b 595 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → 𝑧𝐴)
66 brinxp 5624 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐴𝑧𝐴) → (𝑤 𝑧𝑤( ∩ (𝐴 × 𝐴))𝑧))
6766ancoms 461 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑤𝐴) → (𝑤 𝑧𝑤( ∩ (𝐴 × 𝐴))𝑧))
6867notbid 320 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑤𝐴) → (¬ 𝑤 𝑧 ↔ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧))
6968rabbidva 3478 . . . . . . . . . . . . . . . 16 (𝑧𝐴 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7065, 69syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7124ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
72 rabeq 3483 . . . . . . . . . . . . . . . 16 (dom ( ∩ (𝐴 × 𝐴)) = 𝐴 → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7371, 72syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7470, 73eqtr4d 2859 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7513a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → ( ∩ (𝐴 × 𝐴)) ∈ V)
7665, 71eleqtrrd 2916 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → 𝑧 ∈ dom ( ∩ (𝐴 × 𝐴)))
7715ordtopn1 21796 . . . . . . . . . . . . . . 15 ((( ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom ( ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
7875, 76, 77syl2anc 586 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
7974, 78eqeltrd 2913 . . . . . . . . . . . . 13 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8079anassrs 470 . . . . . . . . . . . 12 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ (𝑦𝐴𝑧 𝑦)) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8180expr 459 . . . . . . . . . . 11 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (𝑧 𝑦 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8257, 81syld 47 . . . . . . . . . 10 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8382rexlimdva 3284 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → (∃𝑦𝐴 ¬ 𝑦 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8450, 83syl5bi 244 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8545, 84pm2.61dne 3103 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8685rexlimdvaa 3285 . . . . . 6 ((𝜑𝑧𝐵) → (∃𝑥𝐴 𝑥 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8737, 86syl5bi 244 . . . . 5 ((𝜑𝑧𝐵) → (¬ ∀𝑤𝐴 ¬ 𝑤 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8833, 87pm2.61d 181 . . . 4 ((𝜑𝑧𝐵) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
898, 88eqeltrd 2913 . . 3 ((𝜑𝑧𝐵) → ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
9089ralrimiva 3182 . 2 (𝜑 → ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
91 fvex 6677 . . . . . . 7 (Base‘𝐾) ∈ V
9222, 91eqeltri 2909 . . . . . 6 𝐵 ∈ V
9392a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
94 rabexg 5226 . . . . 5 (𝐵 ∈ V → {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
9593, 94syl 17 . . . 4 (𝜑 → {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
9695ralrimivw 3183 . . 3 (𝜑 → ∀𝑧𝐵 {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
97 eqid 2821 . . . 4 (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) = (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})
98 ineq1 4180 . . . . 5 (𝑣 = {𝑤𝐵 ∣ ¬ 𝑤 𝑧} → (𝑣𝐴) = ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴))
9998eleq1d 2897 . . . 4 (𝑣 = {𝑤𝐵 ∣ ¬ 𝑤 𝑧} → ((𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10097, 99ralrnmptw 6854 . . 3 (∀𝑧𝐵 {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10196, 100syl 17 . 2 (𝜑 → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10290, 101mpbird 259 1 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cin 3934  wss 3935  c0 4290   class class class wbr 5058  cmpt 5138   × cxp 5547  dom cdm 5549  ran crn 5550  cfv 6349  Basecbs 16477  lecple 16566  ordTopcordt 16766   Proset cproset 17530  Posetcpo 17544  Tosetctos 17637  Topctop 21495  TopOnctopon 21512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-dec 12093  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-ple 16579  df-topgen 16711  df-ordt 16768  df-proset 17532  df-poset 17550  df-toset 17638  df-top 21496  df-topon 21513  df-bases 21548
This theorem is referenced by:  ordtrest2NEW  31161
  Copyright terms: Public domain W3C validator