Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtrest2NEWlem Structured version   Visualization version   GIF version

Theorem ordtrest2NEWlem 29774
Description: Lemma for ordtrest2NEW 29775. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtrest2NEW.2 (𝜑𝐾 ∈ Toset)
ordtrest2NEW.3 (𝜑𝐴𝐵)
ordtrest2NEW.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2NEWlem (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐴,𝑦,𝑣,𝑤,𝑧   𝑣,   𝑥,𝑤,𝑧,𝑦,   𝑣,𝐴,𝑤,𝑧   𝑣,𝐵,𝑤,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑣)   𝐾(𝑧,𝑤,𝑣)

Proof of Theorem ordtrest2NEWlem
StepHypRef Expression
1 inrab2 3881 . . . . 5 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) = {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧}
2 ordtrest2NEW.3 . . . . . . . 8 (𝜑𝐴𝐵)
3 sseqin2 3800 . . . . . . . 8 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
42, 3sylib 208 . . . . . . 7 (𝜑 → (𝐵𝐴) = 𝐴)
54adantr 481 . . . . . 6 ((𝜑𝑧𝐵) → (𝐵𝐴) = 𝐴)
6 rabeq 3182 . . . . . 6 ((𝐵𝐴) = 𝐴 → {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
75, 6syl 17 . . . . 5 ((𝜑𝑧𝐵) → {𝑤 ∈ (𝐵𝐴) ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
81, 7syl5eq 2667 . . . 4 ((𝜑𝑧𝐵) → ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) = {𝑤𝐴 ∣ ¬ 𝑤 𝑧})
9 ordtNEW.l . . . . . . . . . . . . 13 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
10 fvex 6163 . . . . . . . . . . . . . 14 (le‘𝐾) ∈ V
1110inex1 4764 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
129, 11eqeltri 2694 . . . . . . . . . . . 12 ∈ V
1312inex1 4764 . . . . . . . . . . 11 ( ∩ (𝐴 × 𝐴)) ∈ V
1413a1i 11 . . . . . . . . . 10 (𝜑 → ( ∩ (𝐴 × 𝐴)) ∈ V)
15 eqid 2621 . . . . . . . . . . 11 dom ( ∩ (𝐴 × 𝐴)) = dom ( ∩ (𝐴 × 𝐴))
1615ordttopon 20920 . . . . . . . . . 10 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
1714, 16syl 17 . . . . . . . . 9 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
18 ordtrest2NEW.2 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Toset)
19 tospos 29467 . . . . . . . . . . . 12 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
20 posprs 16881 . . . . . . . . . . . 12 (𝐾 ∈ Poset → 𝐾 ∈ Preset )
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑𝐾 ∈ Preset )
22 ordtNEW.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
2322, 9prsssdm 29769 . . . . . . . . . . 11 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
2421, 2, 23syl2anc 692 . . . . . . . . . 10 (𝜑 → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
2524fveq2d 6157 . . . . . . . . 9 (𝜑 → (TopOn‘dom ( ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
2617, 25eleqtrd 2700 . . . . . . . 8 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
27 toponmax 20652 . . . . . . . 8 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
2826, 27syl 17 . . . . . . 7 (𝜑𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
2928adantr 481 . . . . . 6 ((𝜑𝑧𝐵) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
30 rabid2 3110 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ↔ ∀𝑤𝐴 ¬ 𝑤 𝑧)
31 eleq1 2686 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤 𝑧} → (𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
3230, 31sylbir 225 . . . . . 6 (∀𝑤𝐴 ¬ 𝑤 𝑧 → (𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
3329, 32syl5ibcom 235 . . . . 5 ((𝜑𝑧𝐵) → (∀𝑤𝐴 ¬ 𝑤 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
34 dfrex2 2991 . . . . . . 7 (∃𝑤𝐴 𝑤 𝑧 ↔ ¬ ∀𝑤𝐴 ¬ 𝑤 𝑧)
35 breq1 4621 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 𝑧𝑥 𝑧))
3635cbvrexv 3163 . . . . . . 7 (∃𝑤𝐴 𝑤 𝑧 ↔ ∃𝑥𝐴 𝑥 𝑧)
3734, 36bitr3i 266 . . . . . 6 (¬ ∀𝑤𝐴 ¬ 𝑤 𝑧 ↔ ∃𝑥𝐴 𝑥 𝑧)
38 ordttop 20927 . . . . . . . . . . . . 13 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
3914, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
4039adantr 481 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
41 0opn 20641 . . . . . . . . . . 11 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐵) → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4342adantr 481 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
44 eleq1 2686 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} = ∅ → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∅ ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
4543, 44syl5ibrcom 237 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} = ∅ → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
46 rabn0 3937 . . . . . . . . . 10 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ ↔ ∃𝑤𝐴 ¬ 𝑤 𝑧)
47 breq1 4621 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤 𝑧𝑦 𝑧))
4847notbid 308 . . . . . . . . . . 11 (𝑤 = 𝑦 → (¬ 𝑤 𝑧 ↔ ¬ 𝑦 𝑧))
4948cbvrexv 3163 . . . . . . . . . 10 (∃𝑤𝐴 ¬ 𝑤 𝑧 ↔ ∃𝑦𝐴 ¬ 𝑦 𝑧)
5046, 49bitri 264 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ ↔ ∃𝑦𝐴 ¬ 𝑦 𝑧)
5118ad3antrrr 765 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝐾 ∈ Toset)
522ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → 𝐴𝐵)
5352sselda 3587 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝑦𝐵)
54 simpllr 798 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → 𝑧𝐵)
5522, 9trleile 29475 . . . . . . . . . . . . 13 ((𝐾 ∈ Toset ∧ 𝑦𝐵𝑧𝐵) → (𝑦 𝑧𝑧 𝑦))
5651, 53, 54, 55syl3anc 1323 . . . . . . . . . . . 12 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (𝑦 𝑧𝑧 𝑦))
5756ord 392 . . . . . . . . . . 11 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦 𝑧𝑧 𝑦))
58 an4 864 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥 𝑧𝑧 𝑦)))
59 ordtrest2NEW.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
60 rabss 3663 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴 ↔ ∀𝑧𝐵 ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6159, 60sylib 208 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐵 ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6261r19.21bi 2927 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐵) → ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6362an32s 845 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 𝑧𝑧 𝑦) → 𝑧𝐴))
6463impr 648 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝑥 𝑧𝑧 𝑦))) → 𝑧𝐴)
6558, 64sylan2b 492 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → 𝑧𝐴)
66 brinxp 5147 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐴𝑧𝐴) → (𝑤 𝑧𝑤( ∩ (𝐴 × 𝐴))𝑧))
6766ancoms 469 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑤𝐴) → (𝑤 𝑧𝑤( ∩ (𝐴 × 𝐴))𝑧))
6867notbid 308 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑤𝐴) → (¬ 𝑤 𝑧 ↔ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧))
6968rabbidva 3179 . . . . . . . . . . . . . . . 16 (𝑧𝐴 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7065, 69syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7124ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
72 rabeq 3182 . . . . . . . . . . . . . . . 16 (dom ( ∩ (𝐴 × 𝐴)) = 𝐴 → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7371, 72syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7470, 73eqtr4d 2658 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} = {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧})
7513a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → ( ∩ (𝐴 × 𝐴)) ∈ V)
7665, 71eleqtrrd 2701 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → 𝑧 ∈ dom ( ∩ (𝐴 × 𝐴)))
7715ordtopn1 20921 . . . . . . . . . . . . . . 15 ((( ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom ( ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
7875, 76, 77syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤( ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
7974, 78eqeltrd 2698 . . . . . . . . . . . . 13 (((𝜑𝑧𝐵) ∧ ((𝑥𝐴𝑥 𝑧) ∧ (𝑦𝐴𝑧 𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8079anassrs 679 . . . . . . . . . . . 12 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ (𝑦𝐴𝑧 𝑦)) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8180expr 642 . . . . . . . . . . 11 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (𝑧 𝑦 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8257, 81syld 47 . . . . . . . . . 10 ((((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8382rexlimdva 3025 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → (∃𝑦𝐴 ¬ 𝑦 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8450, 83syl5bi 232 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤 𝑧} ≠ ∅ → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8545, 84pm2.61dne 2876 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥𝐴𝑥 𝑧)) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
8685rexlimdvaa 3026 . . . . . 6 ((𝜑𝑧𝐵) → (∃𝑥𝐴 𝑥 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8737, 86syl5bi 232 . . . . 5 ((𝜑𝑧𝐵) → (¬ ∀𝑤𝐴 ¬ 𝑤 𝑧 → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
8833, 87pm2.61d 170 . . . 4 ((𝜑𝑧𝐵) → {𝑤𝐴 ∣ ¬ 𝑤 𝑧} ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
898, 88eqeltrd 2698 . . 3 ((𝜑𝑧𝐵) → ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
9089ralrimiva 2961 . 2 (𝜑 → ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
91 fvex 6163 . . . . . . 7 (Base‘𝐾) ∈ V
9222, 91eqeltri 2694 . . . . . 6 𝐵 ∈ V
9392a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
94 rabexg 4777 . . . . 5 (𝐵 ∈ V → {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
9593, 94syl 17 . . . 4 (𝜑 → {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
9695ralrimivw 2962 . . 3 (𝜑 → ∀𝑧𝐵 {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V)
97 eqid 2621 . . . 4 (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) = (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})
98 ineq1 3790 . . . . 5 (𝑣 = {𝑤𝐵 ∣ ¬ 𝑤 𝑧} → (𝑣𝐴) = ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴))
9998eleq1d 2683 . . . 4 (𝑣 = {𝑤𝐵 ∣ ¬ 𝑤 𝑧} → ((𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10097, 99ralrnmpt 6329 . . 3 (∀𝑧𝐵 {𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10196, 100syl 17 . 2 (𝜑 → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝐵 ({𝑤𝐵 ∣ ¬ 𝑤 𝑧} ∩ 𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
10290, 101mpbird 247 1 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  Vcvv 3189  cin 3558  wss 3559  c0 3896   class class class wbr 4618  cmpt 4678   × cxp 5077  dom cdm 5079  ran crn 5080  cfv 5852  Basecbs 15792  lecple 15880  ordTopcordt 16091   Preset cpreset 16858  Posetcpo 16872  Tosetctos 16965  Topctop 20630  TopOnctopon 20647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-dec 11446  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-ple 15893  df-topgen 16036  df-ordt 16093  df-preset 16860  df-poset 16878  df-toset 16966  df-top 20631  df-topon 20648  df-bases 20674
This theorem is referenced by:  ordtrest2NEW  29775
  Copyright terms: Public domain W3C validator