Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrestixx Structured version   Visualization version   GIF version

Theorem ordtrestixx 21007
 Description: The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordtrestixx.1 𝐴 ⊆ ℝ*
ordtrestixx.2 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
Assertion
Ref Expression
ordtrestixx ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem ordtrestixx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ledm 17205 . . . 4 * = dom ≤
2 letsr 17208 . . . . 5 ≤ ∈ TosetRel
32a1i 11 . . . 4 (⊤ → ≤ ∈ TosetRel )
4 ordtrestixx.1 . . . . 5 𝐴 ⊆ ℝ*
54a1i 11 . . . 4 (⊤ → 𝐴 ⊆ ℝ*)
64sseli 3591 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℝ*)
74sseli 3591 . . . . . . 7 (𝑦𝐴𝑦 ∈ ℝ*)
8 iccval 12199 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
96, 7, 8syl2an 494 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
10 ordtrestixx.2 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
119, 10eqsstr3d 3632 . . . . 5 ((𝑥𝐴𝑦𝐴) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ⊆ 𝐴)
1211adantl 482 . . . 4 ((⊤ ∧ (𝑥𝐴𝑦𝐴)) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ⊆ 𝐴)
131, 3, 5, 12ordtrest2 20989 . . 3 (⊤ → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴))
1413eqcomd 2626 . 2 (⊤ → ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))
1514trud 1491 1 ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1481  ⊤wtru 1482   ∈ wcel 1988  {crab 2913   ∩ cin 3566   ⊆ wss 3567   class class class wbr 4644   × cxp 5102  ‘cfv 5876  (class class class)co 6635  ℝ*cxr 10058   ≤ cle 10060  [,]cicc 12163   ↾t crest 16062  ordTopcordt 16140   TosetRel ctsr 17180 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-pre-lttri 9995  ax-pre-lttrn 9996 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fi 8302  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-icc 12167  df-rest 16064  df-topgen 16085  df-ordt 16142  df-ps 17181  df-tsr 17182  df-top 20680  df-topon 20697  df-bases 20731 This theorem is referenced by:  ordtresticc  21008  icopnfhmeo  22723
 Copyright terms: Public domain W3C validator