MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypecbv Structured version   Visualization version   GIF version

Theorem ordtypecbv 8969
Description: Lemma for ordtype 8984. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
Assertion
Ref Expression
ordtypecbv recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹
Distinct variable groups:   𝑓,𝑟,𝑠,𝑢,𝑣,𝐶   ,𝑗,𝑢,𝑣,𝑤,𝑓,𝑖,𝑦,𝑅,𝑟,𝑠   𝐴,,𝑗,𝑟,𝑠,𝑢,𝑣,𝑤,𝑦
Allowed substitution hints:   𝐴(𝑓,𝑖)   𝐶(𝑦,𝑤,,𝑖,𝑗)   𝐹(𝑦,𝑤,𝑣,𝑢,𝑓,,𝑖,𝑗,𝑠,𝑟)   𝐺(𝑦,𝑤,𝑣,𝑢,𝑓,,𝑖,𝑗,𝑠,𝑟)

Proof of Theorem ordtypecbv
StepHypRef Expression
1 ordtypelem.1 . 2 𝐹 = recs(𝐺)
2 ordtypelem.3 . . . 4 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
3 breq1 5060 . . . . . . . . . 10 (𝑢 = 𝑟 → (𝑢𝑅𝑣𝑟𝑅𝑣))
43notbid 319 . . . . . . . . 9 (𝑢 = 𝑟 → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑟𝑅𝑣))
54cbvralvw 3447 . . . . . . . 8 (∀𝑢𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑟𝐶 ¬ 𝑟𝑅𝑣)
6 breq2 5061 . . . . . . . . . 10 (𝑣 = 𝑠 → (𝑟𝑅𝑣𝑟𝑅𝑠))
76notbid 319 . . . . . . . . 9 (𝑣 = 𝑠 → (¬ 𝑟𝑅𝑣 ↔ ¬ 𝑟𝑅𝑠))
87ralbidv 3194 . . . . . . . 8 (𝑣 = 𝑠 → (∀𝑟𝐶 ¬ 𝑟𝑅𝑣 ↔ ∀𝑟𝐶 ¬ 𝑟𝑅𝑠))
95, 8syl5bb 284 . . . . . . 7 (𝑣 = 𝑠 → (∀𝑢𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑟𝐶 ¬ 𝑟𝑅𝑠))
109cbvriotavw 7113 . . . . . 6 (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣) = (𝑠𝐶𝑟𝐶 ¬ 𝑟𝑅𝑠)
11 ordtypelem.2 . . . . . . . . 9 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
12 breq1 5060 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑗𝑅𝑤𝑖𝑅𝑤))
1312cbvralvw 3447 . . . . . . . . . . 11 (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑖 ∈ ran 𝑖𝑅𝑤)
14 breq2 5061 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑖𝑅𝑤𝑖𝑅𝑦))
1514ralbidv 3194 . . . . . . . . . . 11 (𝑤 = 𝑦 → (∀𝑖 ∈ ran 𝑖𝑅𝑤 ↔ ∀𝑖 ∈ ran 𝑖𝑅𝑦))
1613, 15syl5bb 284 . . . . . . . . . 10 (𝑤 = 𝑦 → (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑖 ∈ ran 𝑖𝑅𝑦))
1716cbvrabv 3489 . . . . . . . . 9 {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑖𝑅𝑦}
1811, 17eqtri 2841 . . . . . . . 8 𝐶 = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑖𝑅𝑦}
19 rneq 5799 . . . . . . . . . 10 ( = 𝑓 → ran = ran 𝑓)
2019raleqdv 3413 . . . . . . . . 9 ( = 𝑓 → (∀𝑖 ∈ ran 𝑖𝑅𝑦 ↔ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦))
2120rabbidv 3478 . . . . . . . 8 ( = 𝑓 → {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑖𝑅𝑦} = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦})
2218, 21syl5eq 2865 . . . . . . 7 ( = 𝑓𝐶 = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦})
2322raleqdv 3413 . . . . . . 7 ( = 𝑓 → (∀𝑟𝐶 ¬ 𝑟𝑅𝑠 ↔ ∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
2422, 23riotaeqbidv 7106 . . . . . 6 ( = 𝑓 → (𝑠𝐶𝑟𝐶 ¬ 𝑟𝑅𝑠) = (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
2510, 24syl5eq 2865 . . . . 5 ( = 𝑓 → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣) = (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
2625cbvmptv 5160 . . . 4 ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣)) = (𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
272, 26eqtri 2841 . . 3 𝐺 = (𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
28 recseq 7999 . . 3 (𝐺 = (𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)) → recs(𝐺) = recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))))
2927, 28ax-mp 5 . 2 recs(𝐺) = recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)))
301, 29eqtr2i 2842 1 recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1528  wral 3135  {crab 3139  Vcvv 3492   class class class wbr 5057  cmpt 5137  ran crn 5549  crio 7102  recscrecs 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-xp 5554  df-cnv 5556  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-iota 6307  df-fv 6356  df-riota 7103  df-wrecs 7936  df-recs 7997
This theorem is referenced by:  oicl  8981  oif  8982  oiiso2  8983  ordtype  8984  oiiniseg  8985  ordtype2  8986
  Copyright terms: Public domain W3C validator