MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem10 Structured version   Visualization version   GIF version

Theorem ordtypelem10 8985
Description: Lemma for ordtype 8990. Using ax-rep 5182, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem10 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem10
Dummy variables 𝑏 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . 3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 8983 . 2 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 8979 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109frnd 6515 . . . 4 (𝜑 → ran 𝑂𝐴)
11 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏𝐴)
126adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 We 𝐴)
137adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 Se 𝐴)
141, 2, 3, 4, 5, 12, 13ordtypelem8 8983 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
15 isof1o 7070 . . . . . . . . . . 11 (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
16 f1of 6609 . . . . . . . . . . 11 (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂⟶ran 𝑂)
1714, 15, 163syl 18 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂⟶ran 𝑂)
18 f1of1 6608 . . . . . . . . . . . 12 (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂1-1→ran 𝑂)
1914, 15, 183syl 18 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂1-1→ran 𝑂)
20 simpl 485 . . . . . . . . . . . . 13 ((𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂) → 𝑏𝐴)
21 seex 5512 . . . . . . . . . . . . 13 ((𝑅 Se 𝐴𝑏𝐴) → {𝑐𝐴𝑐𝑅𝑏} ∈ V)
227, 20, 21syl2an 597 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → {𝑐𝐴𝑐𝑅𝑏} ∈ V)
2310adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂𝐴)
24 rexnal 3238 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
251, 2, 3, 4, 5, 6, 7ordtypelem7 8982 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2625ord 860 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2726rexlimdva 3284 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2824, 27syl5bir 245 . . . . . . . . . . . . . . . 16 ((𝜑𝑏𝐴) → (¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2928con1d 147 . . . . . . . . . . . . . . 15 ((𝜑𝑏𝐴) → (¬ 𝑏 ∈ ran 𝑂 → ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3029impr 457 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
319ffund 6512 . . . . . . . . . . . . . . . . 17 (𝜑 → Fun 𝑂)
3231funfnd 6380 . . . . . . . . . . . . . . . 16 (𝜑𝑂 Fn dom 𝑂)
3332adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Fn dom 𝑂)
34 breq1 5061 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑂𝑚) → (𝑐𝑅𝑏 ↔ (𝑂𝑚)𝑅𝑏))
3534ralrn 6848 . . . . . . . . . . . . . . 15 (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3633, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3730, 36mpbird 259 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏)
38 ssrab 4048 . . . . . . . . . . . . 13 (ran 𝑂 ⊆ {𝑐𝐴𝑐𝑅𝑏} ↔ (ran 𝑂𝐴 ∧ ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏))
3923, 37, 38sylanbrc 585 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ⊆ {𝑐𝐴𝑐𝑅𝑏})
4022, 39ssexd 5220 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ∈ V)
41 f1dmex 7652 . . . . . . . . . . 11 ((𝑂:dom 𝑂1-1→ran 𝑂 ∧ ran 𝑂 ∈ V) → dom 𝑂 ∈ V)
4219, 40, 41syl2anc 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → dom 𝑂 ∈ V)
43 fex 6983 . . . . . . . . . 10 ((𝑂:dom 𝑂⟶ran 𝑂 ∧ dom 𝑂 ∈ V) → 𝑂 ∈ V)
4417, 42, 43syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 ∈ V)
451, 2, 3, 4, 5, 12, 13, 44ordtypelem9 8984 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
46 isof1o 7070 . . . . . . . 8 (𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴) → 𝑂:dom 𝑂1-1-onto𝐴)
47 f1ofo 6616 . . . . . . . 8 (𝑂:dom 𝑂1-1-onto𝐴𝑂:dom 𝑂onto𝐴)
48 forn 6587 . . . . . . . 8 (𝑂:dom 𝑂onto𝐴 → ran 𝑂 = 𝐴)
4945, 46, 47, 484syl 19 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 = 𝐴)
5011, 49eleqtrrd 2916 . . . . . 6 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏 ∈ ran 𝑂)
5150expr 459 . . . . 5 ((𝜑𝑏𝐴) → (¬ 𝑏 ∈ ran 𝑂𝑏 ∈ ran 𝑂))
5251pm2.18d 127 . . . 4 ((𝜑𝑏𝐴) → 𝑏 ∈ ran 𝑂)
5310, 52eqelssd 3987 . . 3 (𝜑 → ran 𝑂 = 𝐴)
54 isoeq5 7068 . . 3 (ran 𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
5553, 54syl 17 . 2 (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
568, 55mpbid 234 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cin 3934  wss 3935   class class class wbr 5058  cmpt 5138   E cep 5458   Se wse 5506   We wwe 5507  dom cdm 5549  ran crn 5550  cima 5552  Oncon0 6185   Fn wfn 6344  wf 6345  1-1wf1 6346  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349   Isom wiso 6350  crio 7107  recscrecs 8001  OrdIsocoi 8967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-wrecs 7941  df-recs 8002  df-oi 8968
This theorem is referenced by:  ordtype  8990
  Copyright terms: Public domain W3C validator