MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem10 Structured version   Visualization version   GIF version

Theorem ordtypelem10 8599
Description: Lemma for ordtype 8604. Using ax-rep 4923, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem10 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem10
Dummy variables 𝑏 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . 3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 8597 . 2 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 8593 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
10 frn 6214 . . . . 5 (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 → ran 𝑂𝐴)
119, 10syl 17 . . . 4 (𝜑 → ran 𝑂𝐴)
12 simprl 811 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏𝐴)
136adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 We 𝐴)
147adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 Se 𝐴)
151, 2, 3, 4, 5, 13, 14ordtypelem8 8597 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
16 isof1o 6737 . . . . . . . . . . . . 13 (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
17 f1of 6299 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂⟶ran 𝑂)
1815, 16, 173syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂⟶ran 𝑂)
19 f1of1 6298 . . . . . . . . . . . . . 14 (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂1-1→ran 𝑂)
2015, 16, 193syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂1-1→ran 𝑂)
21 simpl 474 . . . . . . . . . . . . . . 15 ((𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂) → 𝑏𝐴)
22 seex 5229 . . . . . . . . . . . . . . 15 ((𝑅 Se 𝐴𝑏𝐴) → {𝑐𝐴𝑐𝑅𝑏} ∈ V)
237, 21, 22syl2an 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → {𝑐𝐴𝑐𝑅𝑏} ∈ V)
2411adantr 472 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂𝐴)
25 rexnal 3133 . . . . . . . . . . . . . . . . . . 19 (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
261, 2, 3, 4, 5, 6, 7ordtypelem7 8596 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2726ord 391 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2827rexlimdva 3169 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑏𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2925, 28syl5bir 233 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏𝐴) → (¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
3029con1d 139 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝐴) → (¬ 𝑏 ∈ ran 𝑂 → ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3130impr 650 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
32 ffun 6209 . . . . . . . . . . . . . . . . . . . 20 (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 → Fun 𝑂)
339, 32syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Fun 𝑂)
34 funfn 6079 . . . . . . . . . . . . . . . . . . 19 (Fun 𝑂𝑂 Fn dom 𝑂)
3533, 34sylib 208 . . . . . . . . . . . . . . . . . 18 (𝜑𝑂 Fn dom 𝑂)
3635adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Fn dom 𝑂)
37 breq1 4807 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑂𝑚) → (𝑐𝑅𝑏 ↔ (𝑂𝑚)𝑅𝑏))
3837ralrn 6526 . . . . . . . . . . . . . . . . 17 (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3936, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
4031, 39mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏)
41 ssrab 3821 . . . . . . . . . . . . . . 15 (ran 𝑂 ⊆ {𝑐𝐴𝑐𝑅𝑏} ↔ (ran 𝑂𝐴 ∧ ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏))
4224, 40, 41sylanbrc 701 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ⊆ {𝑐𝐴𝑐𝑅𝑏})
4323, 42ssexd 4957 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ∈ V)
44 f1dmex 7302 . . . . . . . . . . . . 13 ((𝑂:dom 𝑂1-1→ran 𝑂 ∧ ran 𝑂 ∈ V) → dom 𝑂 ∈ V)
4520, 43, 44syl2anc 696 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → dom 𝑂 ∈ V)
46 fex 6654 . . . . . . . . . . . 12 ((𝑂:dom 𝑂⟶ran 𝑂 ∧ dom 𝑂 ∈ V) → 𝑂 ∈ V)
4718, 45, 46syl2anc 696 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 ∈ V)
481, 2, 3, 4, 5, 13, 14, 47ordtypelem9 8598 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
49 isof1o 6737 . . . . . . . . . 10 (𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴) → 𝑂:dom 𝑂1-1-onto𝐴)
50 f1ofo 6306 . . . . . . . . . 10 (𝑂:dom 𝑂1-1-onto𝐴𝑂:dom 𝑂onto𝐴)
51 forn 6280 . . . . . . . . . 10 (𝑂:dom 𝑂onto𝐴 → ran 𝑂 = 𝐴)
5248, 49, 50, 514syl 19 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 = 𝐴)
5312, 52eleqtrrd 2842 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏 ∈ ran 𝑂)
5453expr 644 . . . . . . 7 ((𝜑𝑏𝐴) → (¬ 𝑏 ∈ ran 𝑂𝑏 ∈ ran 𝑂))
5554pm2.18d 124 . . . . . 6 ((𝜑𝑏𝐴) → 𝑏 ∈ ran 𝑂)
5655ex 449 . . . . 5 (𝜑 → (𝑏𝐴𝑏 ∈ ran 𝑂))
5756ssrdv 3750 . . . 4 (𝜑𝐴 ⊆ ran 𝑂)
5811, 57eqssd 3761 . . 3 (𝜑 → ran 𝑂 = 𝐴)
59 isoeq5 6735 . . 3 (ran 𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
6058, 59syl 17 . 2 (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
618, 60mpbid 222 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  {crab 3054  Vcvv 3340  cin 3714  wss 3715   class class class wbr 4804  cmpt 4881   E cep 5178   Se wse 5223   We wwe 5224  dom cdm 5266  ran crn 5267  cima 5269  Oncon0 5884  Fun wfun 6043   Fn wfn 6044  wf 6045  1-1wf1 6046  ontowfo 6047  1-1-ontowf1o 6048  cfv 6049   Isom wiso 6050  crio 6774  recscrecs 7637  OrdIsocoi 8581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-wrecs 7577  df-recs 7638  df-oi 8582
This theorem is referenced by:  ordtype  8604
  Copyright terms: Public domain W3C validator