MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem2 Structured version   Visualization version   GIF version

Theorem ordtypelem2 8985
Description: Lemma for ordtype 8998. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem2 (𝜑 → Ord 𝑇)
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.5 . . . . . . . . . 10 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
21ssrab3 4059 . . . . . . . . 9 𝑇 ⊆ On
32a1i 11 . . . . . . . 8 (𝜑𝑇 ⊆ On)
43sselda 3969 . . . . . . 7 ((𝜑𝑎𝑇) → 𝑎 ∈ On)
5 onss 7507 . . . . . . 7 (𝑎 ∈ On → 𝑎 ⊆ On)
64, 5syl 17 . . . . . 6 ((𝜑𝑎𝑇) → 𝑎 ⊆ On)
7 eloni 6203 . . . . . . . 8 (𝑎 ∈ On → Ord 𝑎)
84, 7syl 17 . . . . . . 7 ((𝜑𝑎𝑇) → Ord 𝑎)
9 imaeq2 5927 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
109raleqdv 3417 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1110rexbidv 3299 . . . . . . . . . 10 (𝑥 = 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1211, 1elrab2 3685 . . . . . . . . 9 (𝑎𝑇 ↔ (𝑎 ∈ On ∧ ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡))
1312simprbi 499 . . . . . . . 8 (𝑎𝑇 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡)
1413adantl 484 . . . . . . 7 ((𝜑𝑎𝑇) → ∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡)
15 ordelss 6209 . . . . . . . . 9 ((Ord 𝑎𝑥𝑎) → 𝑥𝑎)
16 imass2 5967 . . . . . . . . 9 (𝑥𝑎 → (𝐹𝑥) ⊆ (𝐹𝑎))
17 ssralv 4035 . . . . . . . . . 10 ((𝐹𝑥) ⊆ (𝐹𝑎) → (∀𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
1817reximdv 3275 . . . . . . . . 9 ((𝐹𝑥) ⊆ (𝐹𝑎) → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
1915, 16, 183syl 18 . . . . . . . 8 ((Ord 𝑎𝑥𝑎) → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
2019ralrimdva 3191 . . . . . . 7 (Ord 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑎)𝑧𝑅𝑡 → ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
218, 14, 20sylc 65 . . . . . 6 ((𝜑𝑎𝑇) → ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡)
22 ssrab 4051 . . . . . 6 (𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡} ↔ (𝑎 ⊆ On ∧ ∀𝑥𝑎𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡))
236, 21, 22sylanbrc 585 . . . . 5 ((𝜑𝑎𝑇) → 𝑎 ⊆ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡})
2423, 1sseqtrrdi 4020 . . . 4 ((𝜑𝑎𝑇) → 𝑎𝑇)
2524ralrimiva 3184 . . 3 (𝜑 → ∀𝑎𝑇 𝑎𝑇)
26 dftr3 5178 . . 3 (Tr 𝑇 ↔ ∀𝑎𝑇 𝑎𝑇)
2725, 26sylibr 236 . 2 (𝜑 → Tr 𝑇)
28 ordon 7500 . . 3 Ord On
29 trssord 6210 . . 3 ((Tr 𝑇𝑇 ⊆ On ∧ Ord On) → Ord 𝑇)
302, 28, 29mp3an23 1449 . 2 (Tr 𝑇 → Ord 𝑇)
3127, 30syl 17 1 (𝜑 → Ord 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  wss 3938   class class class wbr 5068  cmpt 5148  Tr wtr 5174   Se wse 5514   We wwe 5515  ran crn 5558  cima 5560  Ord word 6192  Oncon0 6193  crio 7115  recscrecs 8009  OrdIsocoi 8975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-cnv 5565  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197
This theorem is referenced by:  ordtypelem5  8988  ordtypelem6  8989  ordtypelem7  8990  ordtypelem8  8991  ordtypelem9  8992
  Copyright terms: Public domain W3C validator