MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem5 Structured version   Visualization version   GIF version

Theorem ordtypelem5 8371
Description: Lemma for ordtype 8381. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem5 (𝜑 → (Ord dom 𝑂𝑂:dom 𝑂𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem5
StepHypRef Expression
1 ordtypelem.1 . . . . 5 𝐹 = recs(𝐺)
2 ordtypelem.2 . . . . 5 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . . . 5 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . . . 5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . . . 5 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . . . 5 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . . . 5 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem2 8368 . . . 4 (𝜑 → Ord 𝑇)
91tfr1a 7435 . . . . . 6 (Fun 𝐹 ∧ Lim dom 𝐹)
109simpri 478 . . . . 5 Lim dom 𝐹
11 limord 5743 . . . . 5 (Lim dom 𝐹 → Ord dom 𝐹)
1210, 11ax-mp 5 . . . 4 Ord dom 𝐹
13 ordin 5712 . . . 4 ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹))
148, 12, 13sylancl 693 . . 3 (𝜑 → Ord (𝑇 ∩ dom 𝐹))
151, 2, 3, 4, 5, 6, 7ordtypelem4 8370 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
16 fdm 6008 . . . . 5 (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 → dom 𝑂 = (𝑇 ∩ dom 𝐹))
1715, 16syl 17 . . . 4 (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹))
18 ordeq 5689 . . . 4 (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
1917, 18syl 17 . . 3 (𝜑 → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
2014, 19mpbird 247 . 2 (𝜑 → Ord dom 𝑂)
2117feq2d 5988 . . 3 (𝜑 → (𝑂:dom 𝑂𝐴𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴))
2215, 21mpbird 247 . 2 (𝜑𝑂:dom 𝑂𝐴)
2320, 22jca 554 1 (𝜑 → (Ord dom 𝑂𝑂:dom 𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wral 2907  wrex 2908  {crab 2911  Vcvv 3186  cin 3554   class class class wbr 4613  cmpt 4673   Se wse 5031   We wwe 5032  dom cdm 5074  ran crn 5075  cima 5077  Ord word 5681  Oncon0 5682  Lim wlim 5683  Fun wfun 5841  wf 5843  crio 6564  recscrecs 7412  OrdIsocoi 8358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-wrecs 7352  df-recs 7413  df-oi 8359
This theorem is referenced by:  oicl  8378  oif  8379
  Copyright terms: Public domain W3C validator