MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduninsuc Structured version   Visualization version   GIF version

Theorem orduninsuc 6997
Description: An ordinal equal to its union is not a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
orduninsuc (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem orduninsuc
StepHypRef Expression
1 ordeleqon 6942 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 id 22 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ On, 𝐴, ∅))
3 unieq 4415 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ On, 𝐴, ∅))
42, 3eqeq12d 2636 . . . . 5 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 = 𝐴 ↔ if(𝐴 ∈ On, 𝐴, ∅) = if(𝐴 ∈ On, 𝐴, ∅)))
5 eqeq1 2625 . . . . . . 7 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (𝐴 = suc 𝑥 ↔ if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥))
65rexbidv 3046 . . . . . 6 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥))
76notbid 308 . . . . 5 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥))
84, 7bibi12d 335 . . . 4 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → ((𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (if(𝐴 ∈ On, 𝐴, ∅) = if(𝐴 ∈ On, 𝐴, ∅) ↔ ¬ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥)))
9 0elon 5742 . . . . . 6 ∅ ∈ On
109elimel 4127 . . . . 5 if(𝐴 ∈ On, 𝐴, ∅) ∈ On
1110onuninsuci 6994 . . . 4 (if(𝐴 ∈ On, 𝐴, ∅) = if(𝐴 ∈ On, 𝐴, ∅) ↔ ¬ ∃𝑥 ∈ On if(𝐴 ∈ On, 𝐴, ∅) = suc 𝑥)
128, 11dedth 4116 . . 3 (𝐴 ∈ On → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
13 unon 6985 . . . . . 6 On = On
1413eqcomi 2630 . . . . 5 On = On
15 onprc 6938 . . . . . . . 8 ¬ On ∈ V
16 vex 3192 . . . . . . . . . 10 𝑥 ∈ V
1716sucex 6965 . . . . . . . . 9 suc 𝑥 ∈ V
18 eleq1 2686 . . . . . . . . 9 (On = suc 𝑥 → (On ∈ V ↔ suc 𝑥 ∈ V))
1917, 18mpbiri 248 . . . . . . . 8 (On = suc 𝑥 → On ∈ V)
2015, 19mto 188 . . . . . . 7 ¬ On = suc 𝑥
2120a1i 11 . . . . . 6 (𝑥 ∈ On → ¬ On = suc 𝑥)
2221nrex 2995 . . . . 5 ¬ ∃𝑥 ∈ On On = suc 𝑥
2314, 222th 254 . . . 4 (On = On ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥)
24 id 22 . . . . . 6 (𝐴 = On → 𝐴 = On)
25 unieq 4415 . . . . . 6 (𝐴 = On → 𝐴 = On)
2624, 25eqeq12d 2636 . . . . 5 (𝐴 = On → (𝐴 = 𝐴 ↔ On = On))
27 eqeq1 2625 . . . . . . 7 (𝐴 = On → (𝐴 = suc 𝑥 ↔ On = suc 𝑥))
2827rexbidv 3046 . . . . . 6 (𝐴 = On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃𝑥 ∈ On On = suc 𝑥))
2928notbid 308 . . . . 5 (𝐴 = On → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥))
3026, 29bibi12d 335 . . . 4 (𝐴 = On → ((𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (On = On ↔ ¬ ∃𝑥 ∈ On On = suc 𝑥)))
3123, 30mpbiri 248 . . 3 (𝐴 = On → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
3212, 31jaoi 394 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
331, 32sylbi 207 1 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383   = wceq 1480  wcel 1987  wrex 2908  Vcvv 3189  c0 3896  ifcif 4063   cuni 4407  Ord word 5686  Oncon0 5687  suc csuc 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-ord 5690  df-on 5691  df-suc 5693
This theorem is referenced by:  ordunisuc2  6998  ordzsl  6999  dflim3  7001  nnsuc  7036
  Copyright terms: Public domain W3C validator