MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisssuc Structured version   Visualization version   GIF version

Theorem ordunisssuc 5789
Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordunisssuc ((𝐴 ⊆ On ∧ Ord 𝐵) → ( 𝐴𝐵𝐴 ⊆ suc 𝐵))

Proof of Theorem ordunisssuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel2 3578 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
2 ordsssuc 5771 . . . . 5 ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥𝐵𝑥 ∈ suc 𝐵))
31, 2sylan 488 . . . 4 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ Ord 𝐵) → (𝑥𝐵𝑥 ∈ suc 𝐵))
43an32s 845 . . 3 (((𝐴 ⊆ On ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝑥𝐵𝑥 ∈ suc 𝐵))
54ralbidva 2979 . 2 ((𝐴 ⊆ On ∧ Ord 𝐵) → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ suc 𝐵))
6 unissb 4435 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
7 dfss3 3573 . 2 (𝐴 ⊆ suc 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ suc 𝐵)
85, 6, 73bitr4g 303 1 ((𝐴 ⊆ On ∧ Ord 𝐵) → ( 𝐴𝐵𝐴 ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987  wral 2907  wss 3555   cuni 4402  Ord word 5681  Oncon0 5682  suc csuc 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-ord 5685  df-on 5686  df-suc 5688
This theorem is referenced by:  ordsucuniel  6971  onsucuni  6975  isfinite2  8162  rankbnd2  8676
  Copyright terms: Public domain W3C validator