MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc Structured version   Visualization version   GIF version

Theorem ordunisuc 7541
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ordunisuc (Ord 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem ordunisuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordeleqon 7497 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 suceq 6250 . . . . . 6 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32unieqd 4841 . . . . 5 (𝑥 = 𝐴 suc 𝑥 = suc 𝐴)
4 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4eqeq12d 2837 . . . 4 (𝑥 = 𝐴 → ( suc 𝑥 = 𝑥 suc 𝐴 = 𝐴))
6 eloni 6195 . . . . . 6 (𝑥 ∈ On → Ord 𝑥)
7 ordtr 6199 . . . . . 6 (Ord 𝑥 → Tr 𝑥)
86, 7syl 17 . . . . 5 (𝑥 ∈ On → Tr 𝑥)
9 vex 3497 . . . . . 6 𝑥 ∈ V
109unisuc 6261 . . . . 5 (Tr 𝑥 suc 𝑥 = 𝑥)
118, 10sylib 220 . . . 4 (𝑥 ∈ On → suc 𝑥 = 𝑥)
125, 11vtoclga 3573 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
13 sucon 7517 . . . . . 6 suc On = On
1413unieqi 4840 . . . . 5 suc On = On
15 unon 7540 . . . . 5 On = On
1614, 15eqtri 2844 . . . 4 suc On = On
17 suceq 6250 . . . . 5 (𝐴 = On → suc 𝐴 = suc On)
1817unieqd 4841 . . . 4 (𝐴 = On → suc 𝐴 = suc On)
19 id 22 . . . 4 (𝐴 = On → 𝐴 = On)
2016, 18, 193eqtr4a 2882 . . 3 (𝐴 = On → suc 𝐴 = 𝐴)
2112, 20jaoi 853 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → suc 𝐴 = 𝐴)
221, 21sylbi 219 1 (Ord 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1533  wcel 2110   cuni 4831  Tr wtr 5164  Ord word 6184  Oncon0 6185  suc csuc 6187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-tr 5165  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-ord 6188  df-on 6189  df-suc 6191
This theorem is referenced by:  orduniss2  7542  onsucuni2  7543  nlimsucg  7551  tz7.44-2  8037  ttukeylem7  9931  tsksuc  10178  dfrdg2  33035  ontgsucval  33775  onsuctopon  33777  limsucncmpi  33788  finxpsuclem  34672
  Copyright terms: Public domain W3C validator