Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ornglmulle Structured version   Visualization version   GIF version

Theorem ornglmulle 30085
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
orngmulle.l = (le‘𝑅)
orngmulle.5 (𝜑𝑋 𝑌)
orngmulle.6 (𝜑0 𝑍)
Assertion
Ref Expression
ornglmulle (𝜑 → (𝑍 · 𝑋) (𝑍 · 𝑌))

Proof of Theorem ornglmulle
StepHypRef Expression
1 ornglmullt.1 . . . . 5 (𝜑𝑅 ∈ oRing)
2 orngogrp 30081 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ oGrp)
4 isogrp 29982 . . . . 5 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
54simprbi 483 . . . 4 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
63, 5syl 17 . . 3 (𝜑𝑅 ∈ oMnd)
7 orngring 30080 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 ringgrp 18723 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
11 ornglmullt.b . . . . 5 𝐵 = (Base‘𝑅)
12 ornglmullt.0 . . . . 5 0 = (0g𝑅)
1311, 12grpidcl 17622 . . . 4 (𝑅 ∈ Grp → 0𝐵)
1410, 13syl 17 . . 3 (𝜑0𝐵)
15 ornglmullt.4 . . . . 5 (𝜑𝑍𝐵)
16 ornglmullt.3 . . . . 5 (𝜑𝑌𝐵)
17 ornglmullt.t . . . . . 6 · = (.r𝑅)
1811, 17ringcl 18732 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑌𝐵) → (𝑍 · 𝑌) ∈ 𝐵)
198, 15, 16, 18syl3anc 1463 . . . 4 (𝜑 → (𝑍 · 𝑌) ∈ 𝐵)
20 ornglmullt.2 . . . . 5 (𝜑𝑋𝐵)
2111, 17ringcl 18732 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋𝐵) → (𝑍 · 𝑋) ∈ 𝐵)
228, 15, 20, 21syl3anc 1463 . . . 4 (𝜑 → (𝑍 · 𝑋) ∈ 𝐵)
23 eqid 2748 . . . . 5 (-g𝑅) = (-g𝑅)
2411, 23grpsubcl 17667 . . . 4 ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)) ∈ 𝐵)
2510, 19, 22, 24syl3anc 1463 . . 3 (𝜑 → ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)) ∈ 𝐵)
26 orngmulle.6 . . . . 5 (𝜑0 𝑍)
2711, 23grpsubcl 17667 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2810, 16, 20, 27syl3anc 1463 . . . . 5 (𝜑 → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2911, 12, 23grpsubid 17671 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(-g𝑅)𝑋) = 0 )
3010, 20, 29syl2anc 696 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) = 0 )
31 orngmulle.5 . . . . . . 7 (𝜑𝑋 𝑌)
32 orngmulle.l . . . . . . . 8 = (le‘𝑅)
3311, 32, 23ogrpsub 29997 . . . . . . 7 ((𝑅 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
343, 20, 16, 20, 31, 33syl131anc 1476 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
3530, 34eqbrtrrd 4816 . . . . 5 (𝜑0 (𝑌(-g𝑅)𝑋))
3611, 32, 12, 17orngmul 30083 . . . . 5 ((𝑅 ∈ oRing ∧ (𝑍𝐵0 𝑍) ∧ ((𝑌(-g𝑅)𝑋) ∈ 𝐵0 (𝑌(-g𝑅)𝑋))) → 0 (𝑍 · (𝑌(-g𝑅)𝑋)))
371, 15, 26, 28, 35, 36syl122anc 1472 . . . 4 (𝜑0 (𝑍 · (𝑌(-g𝑅)𝑋)))
3811, 17, 23, 8, 15, 16, 20ringsubdi 18770 . . . 4 (𝜑 → (𝑍 · (𝑌(-g𝑅)𝑋)) = ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)))
3937, 38breqtrd 4818 . . 3 (𝜑0 ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)))
40 eqid 2748 . . . 4 (+g𝑅) = (+g𝑅)
4111, 32, 40omndadd 29986 . . 3 ((𝑅 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) ∧ 0 ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))) → ( 0 (+g𝑅)(𝑍 · 𝑋)) (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)))
426, 14, 25, 22, 39, 41syl131anc 1476 . 2 (𝜑 → ( 0 (+g𝑅)(𝑍 · 𝑋)) (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)))
4311, 40, 12grplid 17624 . . 3 ((𝑅 ∈ Grp ∧ (𝑍 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋))
4410, 22, 43syl2anc 696 . 2 (𝜑 → ( 0 (+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋))
4511, 40, 23grpnpcan 17679 . . 3 ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌))
4610, 19, 22, 45syl3anc 1463 . 2 (𝜑 → (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌))
4742, 44, 463brtr3d 4823 1 (𝜑 → (𝑍 · 𝑋) (𝑍 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1620  wcel 2127   class class class wbr 4792  cfv 6037  (class class class)co 6801  Basecbs 16030  +gcplusg 16114  .rcmulr 16115  lecple 16121  0gc0g 16273  Grpcgrp 17594  -gcsg 17596  Ringcrg 18718  oMndcomnd 29977  oGrpcogrp 29978  oRingcorng 30075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-plusg 16127  df-0g 16275  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597  df-minusg 17598  df-sbg 17599  df-mgp 18661  df-ur 18673  df-ring 18720  df-omnd 29979  df-ogrp 29980  df-orng 30077
This theorem is referenced by:  ornglmullt  30087
  Copyright terms: Public domain W3C validator