Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ornglmulle Structured version   Visualization version   GIF version

Theorem ornglmulle 29587
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
orngmulle.l = (le‘𝑅)
orngmulle.5 (𝜑𝑋 𝑌)
orngmulle.6 (𝜑0 𝑍)
Assertion
Ref Expression
ornglmulle (𝜑 → (𝑍 · 𝑋) (𝑍 · 𝑌))

Proof of Theorem ornglmulle
StepHypRef Expression
1 ornglmullt.1 . . . . 5 (𝜑𝑅 ∈ oRing)
2 orngogrp 29583 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ oGrp)
4 isogrp 29484 . . . . 5 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
54simprbi 480 . . . 4 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
63, 5syl 17 . . 3 (𝜑𝑅 ∈ oMnd)
7 orngring 29582 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 ringgrp 18473 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
11 ornglmullt.b . . . . 5 𝐵 = (Base‘𝑅)
12 ornglmullt.0 . . . . 5 0 = (0g𝑅)
1311, 12grpidcl 17371 . . . 4 (𝑅 ∈ Grp → 0𝐵)
1410, 13syl 17 . . 3 (𝜑0𝐵)
15 ornglmullt.4 . . . . 5 (𝜑𝑍𝐵)
16 ornglmullt.3 . . . . 5 (𝜑𝑌𝐵)
17 ornglmullt.t . . . . . 6 · = (.r𝑅)
1811, 17ringcl 18482 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑌𝐵) → (𝑍 · 𝑌) ∈ 𝐵)
198, 15, 16, 18syl3anc 1323 . . . 4 (𝜑 → (𝑍 · 𝑌) ∈ 𝐵)
20 ornglmullt.2 . . . . 5 (𝜑𝑋𝐵)
2111, 17ringcl 18482 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋𝐵) → (𝑍 · 𝑋) ∈ 𝐵)
228, 15, 20, 21syl3anc 1323 . . . 4 (𝜑 → (𝑍 · 𝑋) ∈ 𝐵)
23 eqid 2621 . . . . 5 (-g𝑅) = (-g𝑅)
2411, 23grpsubcl 17416 . . . 4 ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)) ∈ 𝐵)
2510, 19, 22, 24syl3anc 1323 . . 3 (𝜑 → ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)) ∈ 𝐵)
26 orngmulle.6 . . . . 5 (𝜑0 𝑍)
2711, 23grpsubcl 17416 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2810, 16, 20, 27syl3anc 1323 . . . . 5 (𝜑 → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2911, 12, 23grpsubid 17420 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(-g𝑅)𝑋) = 0 )
3010, 20, 29syl2anc 692 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) = 0 )
31 orngmulle.5 . . . . . . 7 (𝜑𝑋 𝑌)
32 orngmulle.l . . . . . . . 8 = (le‘𝑅)
3311, 32, 23ogrpsub 29499 . . . . . . 7 ((𝑅 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
343, 20, 16, 20, 31, 33syl131anc 1336 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
3530, 34eqbrtrrd 4637 . . . . 5 (𝜑0 (𝑌(-g𝑅)𝑋))
3611, 32, 12, 17orngmul 29585 . . . . 5 ((𝑅 ∈ oRing ∧ (𝑍𝐵0 𝑍) ∧ ((𝑌(-g𝑅)𝑋) ∈ 𝐵0 (𝑌(-g𝑅)𝑋))) → 0 (𝑍 · (𝑌(-g𝑅)𝑋)))
371, 15, 26, 28, 35, 36syl122anc 1332 . . . 4 (𝜑0 (𝑍 · (𝑌(-g𝑅)𝑋)))
3811, 17, 23, 8, 15, 16, 20ringsubdi 18520 . . . 4 (𝜑 → (𝑍 · (𝑌(-g𝑅)𝑋)) = ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)))
3937, 38breqtrd 4639 . . 3 (𝜑0 ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)))
40 eqid 2621 . . . 4 (+g𝑅) = (+g𝑅)
4111, 32, 40omndadd 29488 . . 3 ((𝑅 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) ∧ 0 ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))) → ( 0 (+g𝑅)(𝑍 · 𝑋)) (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)))
426, 14, 25, 22, 39, 41syl131anc 1336 . 2 (𝜑 → ( 0 (+g𝑅)(𝑍 · 𝑋)) (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)))
4311, 40, 12grplid 17373 . . 3 ((𝑅 ∈ Grp ∧ (𝑍 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋))
4410, 22, 43syl2anc 692 . 2 (𝜑 → ( 0 (+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋))
4511, 40, 23grpnpcan 17428 . . 3 ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌))
4610, 19, 22, 45syl3anc 1323 . 2 (𝜑 → (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌))
4742, 44, 463brtr3d 4644 1 (𝜑 → (𝑍 · 𝑋) (𝑍 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  lecple 15869  0gc0g 16021  Grpcgrp 17343  -gcsg 17345  Ringcrg 18468  oMndcomnd 29479  oGrpcogrp 29480  oRingcorng 29577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mgp 18411  df-ur 18423  df-ring 18470  df-omnd 29481  df-ogrp 29482  df-orng 29579
This theorem is referenced by:  ornglmullt  29589
  Copyright terms: Public domain W3C validator