Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ornglmulle Structured version   Visualization version   GIF version

Theorem ornglmulle 30805
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
orngmulle.l = (le‘𝑅)
orngmulle.5 (𝜑𝑋 𝑌)
orngmulle.6 (𝜑0 𝑍)
Assertion
Ref Expression
ornglmulle (𝜑 → (𝑍 · 𝑋) (𝑍 · 𝑌))

Proof of Theorem ornglmulle
StepHypRef Expression
1 ornglmullt.1 . . . . 5 (𝜑𝑅 ∈ oRing)
2 orngogrp 30801 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ oGrp)
4 isogrp 30630 . . . . 5 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
54simprbi 497 . . . 4 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
63, 5syl 17 . . 3 (𝜑𝑅 ∈ oMnd)
7 orngring 30800 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 ringgrp 19231 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
11 ornglmullt.b . . . . 5 𝐵 = (Base‘𝑅)
12 ornglmullt.0 . . . . 5 0 = (0g𝑅)
1311, 12grpidcl 18069 . . . 4 (𝑅 ∈ Grp → 0𝐵)
1410, 13syl 17 . . 3 (𝜑0𝐵)
15 ornglmullt.4 . . . . 5 (𝜑𝑍𝐵)
16 ornglmullt.3 . . . . 5 (𝜑𝑌𝐵)
17 ornglmullt.t . . . . . 6 · = (.r𝑅)
1811, 17ringcl 19240 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑌𝐵) → (𝑍 · 𝑌) ∈ 𝐵)
198, 15, 16, 18syl3anc 1363 . . . 4 (𝜑 → (𝑍 · 𝑌) ∈ 𝐵)
20 ornglmullt.2 . . . . 5 (𝜑𝑋𝐵)
2111, 17ringcl 19240 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋𝐵) → (𝑍 · 𝑋) ∈ 𝐵)
228, 15, 20, 21syl3anc 1363 . . . 4 (𝜑 → (𝑍 · 𝑋) ∈ 𝐵)
23 eqid 2818 . . . . 5 (-g𝑅) = (-g𝑅)
2411, 23grpsubcl 18117 . . . 4 ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)) ∈ 𝐵)
2510, 19, 22, 24syl3anc 1363 . . 3 (𝜑 → ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)) ∈ 𝐵)
26 orngmulle.6 . . . . 5 (𝜑0 𝑍)
2711, 23grpsubcl 18117 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2810, 16, 20, 27syl3anc 1363 . . . . 5 (𝜑 → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2911, 12, 23grpsubid 18121 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(-g𝑅)𝑋) = 0 )
3010, 20, 29syl2anc 584 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) = 0 )
31 orngmulle.5 . . . . . . 7 (𝜑𝑋 𝑌)
32 orngmulle.l . . . . . . . 8 = (le‘𝑅)
3311, 32, 23ogrpsub 30644 . . . . . . 7 ((𝑅 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
343, 20, 16, 20, 31, 33syl131anc 1375 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
3530, 34eqbrtrrd 5081 . . . . 5 (𝜑0 (𝑌(-g𝑅)𝑋))
3611, 32, 12, 17orngmul 30803 . . . . 5 ((𝑅 ∈ oRing ∧ (𝑍𝐵0 𝑍) ∧ ((𝑌(-g𝑅)𝑋) ∈ 𝐵0 (𝑌(-g𝑅)𝑋))) → 0 (𝑍 · (𝑌(-g𝑅)𝑋)))
371, 15, 26, 28, 35, 36syl122anc 1371 . . . 4 (𝜑0 (𝑍 · (𝑌(-g𝑅)𝑋)))
3811, 17, 23, 8, 15, 16, 20ringsubdi 19278 . . . 4 (𝜑 → (𝑍 · (𝑌(-g𝑅)𝑋)) = ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)))
3937, 38breqtrd 5083 . . 3 (𝜑0 ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)))
40 eqid 2818 . . . 4 (+g𝑅) = (+g𝑅)
4111, 32, 40omndadd 30634 . . 3 ((𝑅 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋)) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) ∧ 0 ((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))) → ( 0 (+g𝑅)(𝑍 · 𝑋)) (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)))
426, 14, 25, 22, 39, 41syl131anc 1375 . 2 (𝜑 → ( 0 (+g𝑅)(𝑍 · 𝑋)) (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)))
4311, 40, 12grplid 18071 . . 3 ((𝑅 ∈ Grp ∧ (𝑍 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋))
4410, 22, 43syl2anc 584 . 2 (𝜑 → ( 0 (+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑋))
4511, 40, 23grpnpcan 18129 . . 3 ((𝑅 ∈ Grp ∧ (𝑍 · 𝑌) ∈ 𝐵 ∧ (𝑍 · 𝑋) ∈ 𝐵) → (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌))
4610, 19, 22, 45syl3anc 1363 . 2 (𝜑 → (((𝑍 · 𝑌)(-g𝑅)(𝑍 · 𝑋))(+g𝑅)(𝑍 · 𝑋)) = (𝑍 · 𝑌))
4742, 44, 463brtr3d 5088 1 (𝜑 → (𝑍 · 𝑋) (𝑍 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  .rcmulr 16554  lecple 16560  0gc0g 16701  Grpcgrp 18041  -gcsg 18043  Ringcrg 19226  oMndcomnd 30625  oGrpcogrp 30626  oRingcorng 30795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mgp 19169  df-ur 19181  df-ring 19228  df-omnd 30627  df-ogrp 30628  df-orng 30797
This theorem is referenced by:  ornglmullt  30807
  Copyright terms: Public domain W3C validator