Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ornglmullt Structured version   Visualization version   GIF version

Theorem ornglmullt 29634
 Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
ornglmullt.l < = (lt‘𝑅)
ornglmullt.d (𝜑𝑅 ∈ DivRing)
ornglmullt.5 (𝜑𝑋 < 𝑌)
ornglmullt.6 (𝜑0 < 𝑍)
Assertion
Ref Expression
ornglmullt (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))

Proof of Theorem ornglmullt
StepHypRef Expression
1 ornglmullt.b . . 3 𝐵 = (Base‘𝑅)
2 ornglmullt.t . . 3 · = (.r𝑅)
3 ornglmullt.0 . . 3 0 = (0g𝑅)
4 ornglmullt.1 . . 3 (𝜑𝑅 ∈ oRing)
5 ornglmullt.2 . . 3 (𝜑𝑋𝐵)
6 ornglmullt.3 . . 3 (𝜑𝑌𝐵)
7 ornglmullt.4 . . 3 (𝜑𝑍𝐵)
8 eqid 2621 . . 3 (le‘𝑅) = (le‘𝑅)
9 ornglmullt.5 . . . 4 (𝜑𝑋 < 𝑌)
10 ornglmullt.l . . . . . 6 < = (lt‘𝑅)
118, 10pltle 16901 . . . . 5 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝑅)𝑌))
1211imp 445 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝑅)𝑌)
134, 5, 6, 9, 12syl31anc 1326 . . 3 (𝜑𝑋(le‘𝑅)𝑌)
14 orngring 29627 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
154, 14syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
16 ringgrp 18492 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
171, 3grpidcl 17390 . . . . 5 (𝑅 ∈ Grp → 0𝐵)
1815, 16, 173syl 18 . . . 4 (𝜑0𝐵)
19 ornglmullt.6 . . . 4 (𝜑0 < 𝑍)
208, 10pltle 16901 . . . . 5 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0 (le‘𝑅)𝑍))
2120imp 445 . . . 4 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0 (le‘𝑅)𝑍)
224, 18, 7, 19, 21syl31anc 1326 . . 3 (𝜑0 (le‘𝑅)𝑍)
231, 2, 3, 4, 5, 6, 7, 8, 13, 22ornglmulle 29632 . 2 (𝜑 → (𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌))
24 simpr 477 . . . . . 6 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (𝑍 · 𝑋) = (𝑍 · 𝑌))
2524oveq2d 6631 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
26 ornglmullt.d . . . . . . . . . 10 (𝜑𝑅 ∈ DivRing)
2710pltne 16902 . . . . . . . . . . . . 13 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0𝑍))
2827imp 445 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0𝑍)
294, 18, 7, 19, 28syl31anc 1326 . . . . . . . . . . 11 (𝜑0𝑍)
3029necomd 2845 . . . . . . . . . 10 (𝜑𝑍0 )
31 eqid 2621 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
321, 31, 3drngunit 18692 . . . . . . . . . . 11 (𝑅 ∈ DivRing → (𝑍 ∈ (Unit‘𝑅) ↔ (𝑍𝐵𝑍0 )))
3332biimpar 502 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ (𝑍𝐵𝑍0 )) → 𝑍 ∈ (Unit‘𝑅))
3426, 7, 30, 33syl12anc 1321 . . . . . . . . 9 (𝜑𝑍 ∈ (Unit‘𝑅))
35 eqid 2621 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
36 eqid 2621 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
3731, 35, 2, 36unitlinv 18617 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝑍) · 𝑍) = (1r𝑅))
3815, 34, 37syl2anc 692 . . . . . . . 8 (𝜑 → (((invr𝑅)‘𝑍) · 𝑍) = (1r𝑅))
3938oveq1d 6630 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = ((1r𝑅) · 𝑋))
4031, 35, 1ringinvcl 18616 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
4115, 34, 40syl2anc 692 . . . . . . . 8 (𝜑 → ((invr𝑅)‘𝑍) ∈ 𝐵)
421, 2ringass 18504 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)))
4315, 41, 7, 5, 42syl13anc 1325 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)))
441, 2, 36ringlidm 18511 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
4515, 5, 44syl2anc 692 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑋) = 𝑋)
4639, 43, 453eqtr3d 2663 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋)
4746adantr 481 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋)
4838oveq1d 6630 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = ((1r𝑅) · 𝑌))
491, 2ringass 18504 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
5015, 41, 7, 6, 49syl13anc 1325 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
511, 2, 36ringlidm 18511 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
5215, 6, 51syl2anc 692 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑌) = 𝑌)
5348, 50, 523eqtr3d 2663 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌)
5453adantr 481 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌)
5525, 47, 543eqtr3d 2663 . . . 4 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋 = 𝑌)
5610pltne 16902 . . . . . . . 8 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
5756imp 445 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
584, 5, 6, 9, 57syl31anc 1326 . . . . . 6 (𝜑𝑋𝑌)
5958adantr 481 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋𝑌)
6059neneqd 2795 . . . 4 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → ¬ 𝑋 = 𝑌)
6155, 60pm2.65da 599 . . 3 (𝜑 → ¬ (𝑍 · 𝑋) = (𝑍 · 𝑌))
6261neqned 2797 . 2 (𝜑 → (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))
631, 2ringcl 18501 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋𝐵) → (𝑍 · 𝑋) ∈ 𝐵)
6415, 7, 5, 63syl3anc 1323 . . 3 (𝜑 → (𝑍 · 𝑋) ∈ 𝐵)
651, 2ringcl 18501 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑌𝐵) → (𝑍 · 𝑌) ∈ 𝐵)
6615, 7, 6, 65syl3anc 1323 . . 3 (𝜑 → (𝑍 · 𝑌) ∈ 𝐵)
678, 10pltval 16900 . . 3 ((𝑅 ∈ oRing ∧ (𝑍 · 𝑋) ∈ 𝐵 ∧ (𝑍 · 𝑌) ∈ 𝐵) → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))))
684, 64, 66, 67syl3anc 1323 . 2 (𝜑 → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))))
6923, 62, 68mpbir2and 956 1 (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   class class class wbr 4623  ‘cfv 5857  (class class class)co 6615  Basecbs 15800  .rcmulr 15882  lecple 15888  0gc0g 16040  ltcplt 16881  Grpcgrp 17362  1rcur 18441  Ringcrg 18487  Unitcui 18579  invrcinvr 18611  DivRingcdr 18687  oRingcorng 29622 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-0g 16042  df-plt 16898  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365  df-minusg 17366  df-sbg 17367  df-mgp 18430  df-ur 18442  df-ring 18489  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-drng 18689  df-omnd 29526  df-ogrp 29527  df-orng 29624 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator