Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngrmulle Structured version   Visualization version   GIF version

Theorem orngrmulle 29780
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
orngmulle.l = (le‘𝑅)
orngmulle.5 (𝜑𝑋 𝑌)
orngmulle.6 (𝜑0 𝑍)
Assertion
Ref Expression
orngrmulle (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))

Proof of Theorem orngrmulle
StepHypRef Expression
1 ornglmullt.1 . . . . 5 (𝜑𝑅 ∈ oRing)
2 orngogrp 29775 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ oGrp)
4 isogrp 29676 . . . . 5 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
54simprbi 480 . . . 4 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
63, 5syl 17 . . 3 (𝜑𝑅 ∈ oMnd)
7 orngring 29774 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 ringgrp 18533 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
11 ornglmullt.b . . . . 5 𝐵 = (Base‘𝑅)
12 ornglmullt.0 . . . . 5 0 = (0g𝑅)
1311, 12grpidcl 17431 . . . 4 (𝑅 ∈ Grp → 0𝐵)
1410, 13syl 17 . . 3 (𝜑0𝐵)
15 ornglmullt.3 . . . . 5 (𝜑𝑌𝐵)
16 ornglmullt.4 . . . . 5 (𝜑𝑍𝐵)
17 ornglmullt.t . . . . . 6 · = (.r𝑅)
1811, 17ringcl 18542 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
198, 15, 16, 18syl3anc 1324 . . . 4 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
20 ornglmullt.2 . . . . 5 (𝜑𝑋𝐵)
2111, 17ringcl 18542 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
228, 20, 16, 21syl3anc 1324 . . . 4 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
23 eqid 2620 . . . . 5 (-g𝑅) = (-g𝑅)
2411, 23grpsubcl 17476 . . . 4 ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵)
2510, 19, 22, 24syl3anc 1324 . . 3 (𝜑 → ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵)
2611, 23grpsubcl 17476 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2710, 15, 20, 26syl3anc 1324 . . . . 5 (𝜑 → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2811, 12, 23grpsubid 17480 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(-g𝑅)𝑋) = 0 )
2910, 20, 28syl2anc 692 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) = 0 )
30 orngmulle.5 . . . . . . 7 (𝜑𝑋 𝑌)
31 orngmulle.l . . . . . . . 8 = (le‘𝑅)
3211, 31, 23ogrpsub 29691 . . . . . . 7 ((𝑅 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
333, 20, 15, 20, 30, 32syl131anc 1337 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
3429, 33eqbrtrrd 4668 . . . . 5 (𝜑0 (𝑌(-g𝑅)𝑋))
35 orngmulle.6 . . . . 5 (𝜑0 𝑍)
3611, 31, 12, 17orngmul 29777 . . . . 5 ((𝑅 ∈ oRing ∧ ((𝑌(-g𝑅)𝑋) ∈ 𝐵0 (𝑌(-g𝑅)𝑋)) ∧ (𝑍𝐵0 𝑍)) → 0 ((𝑌(-g𝑅)𝑋) · 𝑍))
371, 27, 34, 16, 35, 36syl122anc 1333 . . . 4 (𝜑0 ((𝑌(-g𝑅)𝑋) · 𝑍))
3811, 17, 23, 8, 15, 20, 16rngsubdir 18581 . . . 4 (𝜑 → ((𝑌(-g𝑅)𝑋) · 𝑍) = ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)))
3937, 38breqtrd 4670 . . 3 (𝜑0 ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)))
40 eqid 2620 . . . 4 (+g𝑅) = (+g𝑅)
4111, 31, 40omndadd 29680 . . 3 ((𝑅 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) ∧ 0 ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))) → ( 0 (+g𝑅)(𝑋 · 𝑍)) (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)))
426, 14, 25, 22, 39, 41syl131anc 1337 . 2 (𝜑 → ( 0 (+g𝑅)(𝑋 · 𝑍)) (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)))
4311, 40, 12grplid 17433 . . 3 ((𝑅 ∈ Grp ∧ (𝑋 · 𝑍) ∈ 𝐵) → ( 0 (+g𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍))
4410, 22, 43syl2anc 692 . 2 (𝜑 → ( 0 (+g𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍))
4511, 40, 23grpnpcan 17488 . . 3 ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍))
4610, 19, 22, 45syl3anc 1324 . 2 (𝜑 → (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍))
4742, 44, 463brtr3d 4675 1 (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1481  wcel 1988   class class class wbr 4644  cfv 5876  (class class class)co 6635  Basecbs 15838  +gcplusg 15922  .rcmulr 15923  lecple 15929  0gc0g 16081  Grpcgrp 17403  -gcsg 17405  Ringcrg 18528  oMndcomnd 29671  oGrpcogrp 29672  oRingcorng 29769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-plusg 15935  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-sbg 17408  df-mgp 18471  df-ur 18483  df-ring 18530  df-omnd 29673  df-ogrp 29674  df-orng 29771
This theorem is referenced by:  orngrmullt  29782
  Copyright terms: Public domain W3C validator