Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngsqr Structured version   Visualization version   GIF version

Theorem orngsqr 29601
Description: In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
orngmul.0 𝐵 = (Base‘𝑅)
orngmul.1 = (le‘𝑅)
orngmul.2 0 = (0g𝑅)
orngmul.3 · = (.r𝑅)
Assertion
Ref Expression
orngsqr ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 0 (𝑋 · 𝑋))

Proof of Theorem orngsqr
StepHypRef Expression
1 simpll 789 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝑅 ∈ oRing)
2 simplr 791 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝑋𝐵)
3 simpr 477 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 0 𝑋)
4 orngmul.0 . . . 4 𝐵 = (Base‘𝑅)
5 orngmul.1 . . . 4 = (le‘𝑅)
6 orngmul.2 . . . 4 0 = (0g𝑅)
7 orngmul.3 . . . 4 · = (.r𝑅)
84, 5, 6, 7orngmul 29600 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑋𝐵0 𝑋)) → 0 (𝑋 · 𝑋))
91, 2, 3, 2, 3, 8syl122anc 1332 . 2 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 0 (𝑋 · 𝑋))
10 simpll 789 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ oRing)
11 orngring 29597 . . . . . . 7 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
1211ad2antrr 761 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ Ring)
13 ringgrp 18476 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1412, 13syl 17 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ Grp)
15 simplr 791 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑋𝐵)
16 eqid 2621 . . . . . 6 (invg𝑅) = (invg𝑅)
174, 16grpinvcl 17391 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑅)‘𝑋) ∈ 𝐵)
1814, 15, 17syl2anc 692 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ((invg𝑅)‘𝑋) ∈ 𝐵)
19 orngogrp 29598 . . . . . . . 8 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
20 isogrp 29499 . . . . . . . . 9 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
2120simprbi 480 . . . . . . . 8 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
2219, 21syl 17 . . . . . . 7 (𝑅 ∈ oRing → 𝑅 ∈ oMnd)
2310, 22syl 17 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ oMnd)
244, 6grpidcl 17374 . . . . . . 7 (𝑅 ∈ Grp → 0𝐵)
2514, 24syl 17 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0𝐵)
26 simpl 473 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 𝑅 ∈ oRing)
2711, 13, 243syl 18 . . . . . . . . . . . 12 (𝑅 ∈ oRing → 0𝐵)
2826, 27syl 17 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 0𝐵)
29 simpr 477 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 𝑋𝐵)
3026, 28, 293jca 1240 . . . . . . . . . 10 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → (𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵))
31 eqid 2621 . . . . . . . . . . . 12 (lt‘𝑅) = (lt‘𝑅)
325, 31pltle 16885 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵) → ( 0 (lt‘𝑅)𝑋0 𝑋))
3332con3dimp 457 . . . . . . . . . 10 (((𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵) ∧ ¬ 0 𝑋) → ¬ 0 (lt‘𝑅)𝑋)
3430, 33sylan 488 . . . . . . . . 9 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ¬ 0 (lt‘𝑅)𝑋)
35 omndtos 29502 . . . . . . . . . . . . 13 (𝑅 ∈ oMnd → 𝑅 ∈ Toset)
3622, 35syl 17 . . . . . . . . . . . 12 (𝑅 ∈ oRing → 𝑅 ∈ Toset)
374, 5, 31tosso 16960 . . . . . . . . . . . . . 14 (𝑅 ∈ Toset → (𝑅 ∈ Toset ↔ ((lt‘𝑅) Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
3837ibi 256 . . . . . . . . . . . . 13 (𝑅 ∈ Toset → ((lt‘𝑅) Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ))
3938simpld 475 . . . . . . . . . . . 12 (𝑅 ∈ Toset → (lt‘𝑅) Or 𝐵)
4010, 36, 393syl 18 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (lt‘𝑅) Or 𝐵)
41 solin 5020 . . . . . . . . . . 11 (((lt‘𝑅) Or 𝐵 ∧ ( 0𝐵𝑋𝐵)) → ( 0 (lt‘𝑅)𝑋0 = 𝑋𝑋(lt‘𝑅) 0 ))
4240, 25, 15, 41syl12anc 1321 . . . . . . . . . 10 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 (lt‘𝑅)𝑋0 = 𝑋𝑋(lt‘𝑅) 0 ))
43 3orass 1039 . . . . . . . . . 10 (( 0 (lt‘𝑅)𝑋0 = 𝑋𝑋(lt‘𝑅) 0 ) ↔ ( 0 (lt‘𝑅)𝑋 ∨ ( 0 = 𝑋𝑋(lt‘𝑅) 0 )))
4442, 43sylib 208 . . . . . . . . 9 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 (lt‘𝑅)𝑋 ∨ ( 0 = 𝑋𝑋(lt‘𝑅) 0 )))
45 orel1 397 . . . . . . . . 9 0 (lt‘𝑅)𝑋 → (( 0 (lt‘𝑅)𝑋 ∨ ( 0 = 𝑋𝑋(lt‘𝑅) 0 )) → ( 0 = 𝑋𝑋(lt‘𝑅) 0 )))
4634, 44, 45sylc 65 . . . . . . . 8 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 = 𝑋𝑋(lt‘𝑅) 0 ))
47 orcom 402 . . . . . . . . 9 (( 0 = 𝑋𝑋(lt‘𝑅) 0 ) ↔ (𝑋(lt‘𝑅) 00 = 𝑋))
48 eqcom 2628 . . . . . . . . . 10 ( 0 = 𝑋𝑋 = 0 )
4948orbi2i 541 . . . . . . . . 9 ((𝑋(lt‘𝑅) 00 = 𝑋) ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 ))
5047, 49bitri 264 . . . . . . . 8 (( 0 = 𝑋𝑋(lt‘𝑅) 0 ) ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 ))
5146, 50sylib 208 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋(lt‘𝑅) 0𝑋 = 0 ))
52 tospos 29455 . . . . . . . . 9 (𝑅 ∈ Toset → 𝑅 ∈ Poset)
5310, 36, 523syl 18 . . . . . . . 8 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ Poset)
544, 5, 31pleval2 16889 . . . . . . . 8 ((𝑅 ∈ Poset ∧ 𝑋𝐵0𝐵) → (𝑋 0 ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 )))
5553, 15, 25, 54syl3anc 1323 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋 0 ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 )))
5651, 55mpbird 247 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑋 0 )
57 eqid 2621 . . . . . . 7 (+g𝑅) = (+g𝑅)
584, 5, 57omndadd 29503 . . . . . 6 ((𝑅 ∈ oMnd ∧ (𝑋𝐵0𝐵 ∧ ((invg𝑅)‘𝑋) ∈ 𝐵) ∧ 𝑋 0 ) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) ( 0 (+g𝑅)((invg𝑅)‘𝑋)))
5923, 15, 25, 18, 56, 58syl131anc 1336 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) ( 0 (+g𝑅)((invg𝑅)‘𝑋)))
604, 57, 6, 16grprinv 17393 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) = 0 )
6114, 15, 60syl2anc 692 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) = 0 )
624, 57, 6grplid 17376 . . . . . 6 ((𝑅 ∈ Grp ∧ ((invg𝑅)‘𝑋) ∈ 𝐵) → ( 0 (+g𝑅)((invg𝑅)‘𝑋)) = ((invg𝑅)‘𝑋))
6314, 18, 62syl2anc 692 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 (+g𝑅)((invg𝑅)‘𝑋)) = ((invg𝑅)‘𝑋))
6459, 61, 633brtr3d 4646 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0 ((invg𝑅)‘𝑋))
654, 5, 6, 7orngmul 29600 . . . 4 ((𝑅 ∈ oRing ∧ (((invg𝑅)‘𝑋) ∈ 𝐵0 ((invg𝑅)‘𝑋)) ∧ (((invg𝑅)‘𝑋) ∈ 𝐵0 ((invg𝑅)‘𝑋))) → 0 (((invg𝑅)‘𝑋) · ((invg𝑅)‘𝑋)))
6610, 18, 64, 18, 64, 65syl122anc 1332 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0 (((invg𝑅)‘𝑋) · ((invg𝑅)‘𝑋)))
674, 7, 16, 12, 15, 15ringm2neg 18522 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (((invg𝑅)‘𝑋) · ((invg𝑅)‘𝑋)) = (𝑋 · 𝑋))
6866, 67breqtrd 4641 . 2 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0 (𝑋 · 𝑋))
699, 68pm2.61dan 831 1 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 0 (𝑋 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1035  w3a 1036   = wceq 1480  wcel 1987  wss 3556   class class class wbr 4615   I cid 4986   Or wor 4996  cres 5078  cfv 5849  (class class class)co 6607  Basecbs 15784  +gcplusg 15865  .rcmulr 15866  lecple 15872  0gc0g 16024  Posetcpo 16864  ltcplt 16865  Tosetctos 16957  Grpcgrp 17346  invgcminusg 17347  Ringcrg 18471  oMndcomnd 29494  oGrpcogrp 29495  oRingcorng 29592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-plusg 15878  df-0g 16026  df-preset 16852  df-poset 16870  df-plt 16882  df-toset 16958  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-grp 17349  df-minusg 17350  df-mgp 18414  df-ur 18426  df-ring 18473  df-omnd 29496  df-ogrp 29497  df-orng 29594
This theorem is referenced by:  orng0le1  29609
  Copyright terms: Public domain W3C validator