Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngsqr Structured version   Visualization version   GIF version

Theorem orngsqr 30877
Description: In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
orngmul.0 𝐵 = (Base‘𝑅)
orngmul.1 = (le‘𝑅)
orngmul.2 0 = (0g𝑅)
orngmul.3 · = (.r𝑅)
Assertion
Ref Expression
orngsqr ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 0 (𝑋 · 𝑋))

Proof of Theorem orngsqr
StepHypRef Expression
1 simpll 765 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝑅 ∈ oRing)
2 simplr 767 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝑋𝐵)
3 simpr 487 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 0 𝑋)
4 orngmul.0 . . . 4 𝐵 = (Base‘𝑅)
5 orngmul.1 . . . 4 = (le‘𝑅)
6 orngmul.2 . . . 4 0 = (0g𝑅)
7 orngmul.3 . . . 4 · = (.r𝑅)
84, 5, 6, 7orngmul 30876 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑋𝐵0 𝑋)) → 0 (𝑋 · 𝑋))
91, 2, 3, 2, 3, 8syl122anc 1375 . 2 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ 0 𝑋) → 0 (𝑋 · 𝑋))
10 simpll 765 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ oRing)
11 orngring 30873 . . . . . . 7 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
1211ad2antrr 724 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ Ring)
13 ringgrp 19301 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1412, 13syl 17 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ Grp)
15 simplr 767 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑋𝐵)
16 eqid 2821 . . . . . 6 (invg𝑅) = (invg𝑅)
174, 16grpinvcl 18150 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑅)‘𝑋) ∈ 𝐵)
1814, 15, 17syl2anc 586 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ((invg𝑅)‘𝑋) ∈ 𝐵)
19 orngogrp 30874 . . . . . . . 8 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
20 isogrp 30703 . . . . . . . . 9 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
2120simprbi 499 . . . . . . . 8 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
2219, 21syl 17 . . . . . . 7 (𝑅 ∈ oRing → 𝑅 ∈ oMnd)
2310, 22syl 17 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ oMnd)
244, 6grpidcl 18130 . . . . . . 7 (𝑅 ∈ Grp → 0𝐵)
2514, 24syl 17 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0𝐵)
26 simpl 485 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 𝑅 ∈ oRing)
2711, 13, 243syl 18 . . . . . . . . . . . 12 (𝑅 ∈ oRing → 0𝐵)
2826, 27syl 17 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 0𝐵)
29 simpr 487 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 𝑋𝐵)
3026, 28, 293jca 1124 . . . . . . . . . 10 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → (𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵))
31 eqid 2821 . . . . . . . . . . . 12 (lt‘𝑅) = (lt‘𝑅)
325, 31pltle 17570 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵) → ( 0 (lt‘𝑅)𝑋0 𝑋))
3332con3dimp 411 . . . . . . . . . 10 (((𝑅 ∈ oRing ∧ 0𝐵𝑋𝐵) ∧ ¬ 0 𝑋) → ¬ 0 (lt‘𝑅)𝑋)
3430, 33sylan 582 . . . . . . . . 9 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ¬ 0 (lt‘𝑅)𝑋)
35 omndtos 30706 . . . . . . . . . . . . 13 (𝑅 ∈ oMnd → 𝑅 ∈ Toset)
3622, 35syl 17 . . . . . . . . . . . 12 (𝑅 ∈ oRing → 𝑅 ∈ Toset)
374, 5, 31tosso 17645 . . . . . . . . . . . . . 14 (𝑅 ∈ Toset → (𝑅 ∈ Toset ↔ ((lt‘𝑅) Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
3837ibi 269 . . . . . . . . . . . . 13 (𝑅 ∈ Toset → ((lt‘𝑅) Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ))
3938simpld 497 . . . . . . . . . . . 12 (𝑅 ∈ Toset → (lt‘𝑅) Or 𝐵)
4010, 36, 393syl 18 . . . . . . . . . . 11 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (lt‘𝑅) Or 𝐵)
41 solin 5497 . . . . . . . . . . 11 (((lt‘𝑅) Or 𝐵 ∧ ( 0𝐵𝑋𝐵)) → ( 0 (lt‘𝑅)𝑋0 = 𝑋𝑋(lt‘𝑅) 0 ))
4240, 25, 15, 41syl12anc 834 . . . . . . . . . 10 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 (lt‘𝑅)𝑋0 = 𝑋𝑋(lt‘𝑅) 0 ))
43 3orass 1086 . . . . . . . . . 10 (( 0 (lt‘𝑅)𝑋0 = 𝑋𝑋(lt‘𝑅) 0 ) ↔ ( 0 (lt‘𝑅)𝑋 ∨ ( 0 = 𝑋𝑋(lt‘𝑅) 0 )))
4442, 43sylib 220 . . . . . . . . 9 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 (lt‘𝑅)𝑋 ∨ ( 0 = 𝑋𝑋(lt‘𝑅) 0 )))
45 orel1 885 . . . . . . . . 9 0 (lt‘𝑅)𝑋 → (( 0 (lt‘𝑅)𝑋 ∨ ( 0 = 𝑋𝑋(lt‘𝑅) 0 )) → ( 0 = 𝑋𝑋(lt‘𝑅) 0 )))
4634, 44, 45sylc 65 . . . . . . . 8 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 = 𝑋𝑋(lt‘𝑅) 0 ))
47 orcom 866 . . . . . . . . 9 (( 0 = 𝑋𝑋(lt‘𝑅) 0 ) ↔ (𝑋(lt‘𝑅) 00 = 𝑋))
48 eqcom 2828 . . . . . . . . . 10 ( 0 = 𝑋𝑋 = 0 )
4948orbi2i 909 . . . . . . . . 9 ((𝑋(lt‘𝑅) 00 = 𝑋) ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 ))
5047, 49bitri 277 . . . . . . . 8 (( 0 = 𝑋𝑋(lt‘𝑅) 0 ) ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 ))
5146, 50sylib 220 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋(lt‘𝑅) 0𝑋 = 0 ))
52 tospos 30645 . . . . . . . . 9 (𝑅 ∈ Toset → 𝑅 ∈ Poset)
5310, 36, 523syl 18 . . . . . . . 8 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑅 ∈ Poset)
544, 5, 31pleval2 17574 . . . . . . . 8 ((𝑅 ∈ Poset ∧ 𝑋𝐵0𝐵) → (𝑋 0 ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 )))
5553, 15, 25, 54syl3anc 1367 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋 0 ↔ (𝑋(lt‘𝑅) 0𝑋 = 0 )))
5651, 55mpbird 259 . . . . . 6 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 𝑋 0 )
57 eqid 2821 . . . . . . 7 (+g𝑅) = (+g𝑅)
584, 5, 57omndadd 30707 . . . . . 6 ((𝑅 ∈ oMnd ∧ (𝑋𝐵0𝐵 ∧ ((invg𝑅)‘𝑋) ∈ 𝐵) ∧ 𝑋 0 ) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) ( 0 (+g𝑅)((invg𝑅)‘𝑋)))
5923, 15, 25, 18, 56, 58syl131anc 1379 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) ( 0 (+g𝑅)((invg𝑅)‘𝑋)))
604, 57, 6, 16grprinv 18152 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) = 0 )
6114, 15, 60syl2anc 586 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (𝑋(+g𝑅)((invg𝑅)‘𝑋)) = 0 )
624, 57, 6grplid 18132 . . . . . 6 ((𝑅 ∈ Grp ∧ ((invg𝑅)‘𝑋) ∈ 𝐵) → ( 0 (+g𝑅)((invg𝑅)‘𝑋)) = ((invg𝑅)‘𝑋))
6314, 18, 62syl2anc 586 . . . . 5 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → ( 0 (+g𝑅)((invg𝑅)‘𝑋)) = ((invg𝑅)‘𝑋))
6459, 61, 633brtr3d 5096 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0 ((invg𝑅)‘𝑋))
654, 5, 6, 7orngmul 30876 . . . 4 ((𝑅 ∈ oRing ∧ (((invg𝑅)‘𝑋) ∈ 𝐵0 ((invg𝑅)‘𝑋)) ∧ (((invg𝑅)‘𝑋) ∈ 𝐵0 ((invg𝑅)‘𝑋))) → 0 (((invg𝑅)‘𝑋) · ((invg𝑅)‘𝑋)))
6610, 18, 64, 18, 64, 65syl122anc 1375 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0 (((invg𝑅)‘𝑋) · ((invg𝑅)‘𝑋)))
674, 7, 16, 12, 15, 15ringm2neg 19347 . . 3 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → (((invg𝑅)‘𝑋) · ((invg𝑅)‘𝑋)) = (𝑋 · 𝑋))
6866, 67breqtrd 5091 . 2 (((𝑅 ∈ oRing ∧ 𝑋𝐵) ∧ ¬ 0 𝑋) → 0 (𝑋 · 𝑋))
699, 68pm2.61dan 811 1 ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 0 (𝑋 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1533  wcel 2110  wss 3935   class class class wbr 5065   I cid 5458   Or wor 5472  cres 5556  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  lecple 16571  0gc0g 16712  Posetcpo 17549  ltcplt 17550  Tosetctos 17642  Grpcgrp 18102  invgcminusg 18103  Ringcrg 19296  oMndcomnd 30698  oGrpcogrp 30699  oRingcorng 30868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-plusg 16577  df-0g 16714  df-proset 17537  df-poset 17555  df-plt 17567  df-toset 17643  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-mgp 19239  df-ur 19251  df-ring 19298  df-omnd 30700  df-ogrp 30701  df-orng 30870
This theorem is referenced by:  orng0le1  30885
  Copyright terms: Public domain W3C validator