Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  orthcom Structured version   Visualization version   GIF version

Theorem orthcom 27949
 Description: Orthogonality commutes. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
orthcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0))

Proof of Theorem orthcom
StepHypRef Expression
1 fveq2 6189 . . . 4 ((𝐴 ·ih 𝐵) = 0 → (∗‘(𝐴 ·ih 𝐵)) = (∗‘0))
2 cj0 13892 . . . 4 (∗‘0) = 0
31, 2syl6eq 2671 . . 3 ((𝐴 ·ih 𝐵) = 0 → (∗‘(𝐴 ·ih 𝐵)) = 0)
4 ax-his1 27923 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵)))
54ancoms 469 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵)))
65eqeq1d 2623 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐵 ·ih 𝐴) = 0 ↔ (∗‘(𝐴 ·ih 𝐵)) = 0))
73, 6syl5ibr 236 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (𝐵 ·ih 𝐴) = 0))
8 fveq2 6189 . . . 4 ((𝐵 ·ih 𝐴) = 0 → (∗‘(𝐵 ·ih 𝐴)) = (∗‘0))
98, 2syl6eq 2671 . . 3 ((𝐵 ·ih 𝐴) = 0 → (∗‘(𝐵 ·ih 𝐴)) = 0)
10 ax-his1 27923 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
1110eqeq1d 2623 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (∗‘(𝐵 ·ih 𝐴)) = 0))
129, 11syl5ibr 236 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐵 ·ih 𝐴) = 0 → (𝐴 ·ih 𝐵) = 0))
137, 12impbid 202 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1482   ∈ wcel 1989  ‘cfv 5886  (class class class)co 6647  0cc0 9933  ∗ccj 13830   ℋchil 27760   ·ih csp 27763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-his1 27923 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-po 5033  df-so 5034  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-2 11076  df-cj 13833  df-re 13834  df-im 13835 This theorem is referenced by:  normpythi  27983  ocorth  28134  shorth  28138  h1dei  28393  h1de2i  28396  pjspansn  28420
 Copyright terms: Public domain W3C validator