Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvccel Structured version   Visualization version   GIF version

Theorem orvccel 30305
 Description: If the relation produces closed sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvccel.1 (𝜑𝑆 ran sigAlgebra)
orvccel.2 (𝜑𝐽 ∈ Top)
orvccel.3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
orvccel.4 (𝜑𝐴𝑉)
orvccel.5 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ (Clsd‘𝐽))
Assertion
Ref Expression
orvccel (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ 𝑆)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋   𝑦,𝐽
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑦)   𝑉(𝑦)

Proof of Theorem orvccel
StepHypRef Expression
1 orvccel.1 . . 3 (𝜑𝑆 ran sigAlgebra)
2 orvccel.2 . . 3 (𝜑𝐽 ∈ Top)
3 orvccel.3 . . 3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
4 orvccel.4 . . 3 (𝜑𝐴𝑉)
51, 2, 3, 4orvcval4 30303 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
62sgsiga 29986 . . 3 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
7 cldssbrsiga 30031 . . . . 5 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
82, 7syl 17 . . . 4 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
9 orvccel.5 . . . 4 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ (Clsd‘𝐽))
108, 9sseldd 3584 . . 3 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} ∈ (sigaGen‘𝐽))
111, 6, 3, 10mbfmcnvima 30100 . 2 (𝜑 → (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}) ∈ 𝑆)
125, 11eqeltrd 2698 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1987  {crab 2911   ⊆ wss 3555  ∪ cuni 4402   class class class wbr 4613  ◡ccnv 5073  ran crn 5075   “ cima 5077  ‘cfv 5847  (class class class)co 6604  Topctop 20617  Clsdccld 20730  sigAlgebracsiga 29951  sigaGencsigagen 29982  MblFnMcmbfm 30093  ∘RV/𝑐corvc 30298 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-ac2 9229 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-oi 8359  df-card 8709  df-acn 8712  df-ac 8883  df-cda 8934  df-top 20621  df-cld 20733  df-siga 29952  df-sigagen 29983  df-mbfm 30094  df-orvc 30299 This theorem is referenced by:  orrvccel  30309
 Copyright terms: Public domain W3C validator