Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcelval Structured version   Visualization version   GIF version

Theorem orvcelval 30860
Description: Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvcelel.1 (𝜑𝐴 ∈ 𝔅)
Assertion
Ref Expression
orvcelval (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))

Proof of Theorem orvcelval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.1 . . 3 (𝜑𝑃 ∈ Prob)
2 dstrvprob.2 . . 3 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvcelel.1 . . 3 (𝜑𝐴 ∈ 𝔅)
41, 2, 3orrvcval4 30856 . 2 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}))
5 epelg 5180 . . . . . 6 (𝐴 ∈ 𝔅 → (𝑥 E 𝐴𝑥𝐴))
63, 5syl 17 . . . . 5 (𝜑 → (𝑥 E 𝐴𝑥𝐴))
76rabbidv 3329 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = {𝑥 ∈ ℝ ∣ 𝑥𝐴})
8 dfin5 3723 . . . . 5 (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥𝐴}
98a1i 11 . . . 4 (𝜑 → (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥𝐴})
10 elssuni 4619 . . . . . . 7 (𝐴 ∈ 𝔅𝐴 𝔅)
11 unibrsiga 30579 . . . . . . 7 𝔅 = ℝ
1210, 11syl6sseq 3792 . . . . . 6 (𝐴 ∈ 𝔅𝐴 ⊆ ℝ)
133, 12syl 17 . . . . 5 (𝜑𝐴 ⊆ ℝ)
14 sseqin2 3960 . . . . 5 (𝐴 ⊆ ℝ ↔ (ℝ ∩ 𝐴) = 𝐴)
1513, 14sylib 208 . . . 4 (𝜑 → (ℝ ∩ 𝐴) = 𝐴)
167, 9, 153eqtr2d 2800 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = 𝐴)
1716imaeq2d 5624 . 2 (𝜑 → (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}) = (𝑋𝐴))
184, 17eqtrd 2794 1 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  {crab 3054  cin 3714  wss 3715   cuni 4588   class class class wbr 4804   E cep 5178  ccnv 5265  cima 5269  cfv 6049  (class class class)co 6814  cr 10147  𝔅cbrsiga 30574  Probcprb 30799  rRndVarcrrv 30832  RV/𝑐corvc 30847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-pre-lttri 10222  ax-pre-lttrn 10223
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-ioo 12392  df-topgen 16326  df-top 20921  df-bases 20972  df-esum 30420  df-siga 30501  df-sigagen 30532  df-brsiga 30575  df-meas 30589  df-mbfm 30643  df-prob 30800  df-rrv 30833  df-orvc 30848
This theorem is referenced by:  orvcelel  30861  dstrvval  30862  dstrvprob  30863
  Copyright terms: Public domain W3C validator