MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem1 Structured version   Visualization version   GIF version

Theorem ostth2lem1 25024
Description: Lemma for ostth2 25043, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 25043. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 𝑛𝑜(𝐴𝑛) for any 1 < 𝐴. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ostth2lem1.1 (𝜑𝐴 ∈ ℝ)
ostth2lem1.2 (𝜑𝐵 ∈ ℝ)
ostth2lem1.3 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))
Assertion
Ref Expression
ostth2lem1 (𝜑𝐴 ≤ 1)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem ostth2lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2re 10937 . . . . . 6 2 ∈ ℝ
2 ostth2lem1.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
32adantr 479 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → 𝐵 ∈ ℝ)
4 remulcl 9877 . . . . . 6 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
51, 3, 4sylancr 693 . . . . 5 ((𝜑 ∧ 1 < 𝐴) → (2 · 𝐵) ∈ ℝ)
6 simpr 475 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → 1 < 𝐴)
7 1re 9895 . . . . . . 7 1 ∈ ℝ
8 ostth2lem1.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
98adantr 479 . . . . . . 7 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
10 difrp 11700 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐴 ↔ (𝐴 − 1) ∈ ℝ+))
117, 9, 10sylancr 693 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → (1 < 𝐴 ↔ (𝐴 − 1) ∈ ℝ+))
126, 11mpbid 220 . . . . 5 ((𝜑 ∧ 1 < 𝐴) → (𝐴 − 1) ∈ ℝ+)
135, 12rerpdivcld 11735 . . . 4 ((𝜑 ∧ 1 < 𝐴) → ((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ)
14 expnbnd 12810 . . . 4 ((((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
1513, 9, 6, 14syl3anc 1317 . . 3 ((𝜑 ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
16 nnnn0 11146 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
17 reexpcl 12694 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
189, 16, 17syl2an 492 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℝ)
1913adantr 479 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ)
2012rpred 11704 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → (𝐴 − 1) ∈ ℝ)
2120adantr 479 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴 − 1) ∈ ℝ)
22 nnre 10874 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2322adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
2421, 23remulcld 9926 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) ∈ ℝ)
2524, 18remulcld 9926 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) ∈ ℝ)
268ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
27 2nn 11032 . . . . . . . . . . . 12 2 ∈ ℕ
28 simpr 475 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
29 nnmulcl 10890 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
3027, 28, 29sylancr 693 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
31 nnnn0 11146 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ → (2 · 𝑘) ∈ ℕ0)
3230, 31syl 17 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ0)
3326, 32reexpcld 12842 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) ∈ ℝ)
3430nnred 10882 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
352ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
3634, 35remulcld 9926 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · 𝐵) ∈ ℝ)
37 0red 9897 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 0 ∈ ℝ)
387a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 1 ∈ ℝ)
39 0lt1 10399 . . . . . . . . . . . . . . 15 0 < 1
4039a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 0 < 1)
4137, 38, 9, 40, 6lttrd 10049 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < 𝐴) → 0 < 𝐴)
429, 41elrpd 11701 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
43 nnz 11232 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
44 rpexpcl 12696 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑘 ∈ ℤ) → (𝐴𝑘) ∈ ℝ+)
4542, 43, 44syl2an 492 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℝ+)
46 peano2re 10060 . . . . . . . . . . . . 13 (((𝐴 − 1) · 𝑘) ∈ ℝ → (((𝐴 − 1) · 𝑘) + 1) ∈ ℝ)
4724, 46syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) + 1) ∈ ℝ)
4824ltp1d 10803 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) < (((𝐴 − 1) · 𝑘) + 1))
4916adantl 480 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
5042adantr 479 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ+)
5150rpge0d 11708 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
52 bernneq2 12808 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑘) + 1) ≤ (𝐴𝑘))
5326, 49, 51, 52syl3anc 1317 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) + 1) ≤ (𝐴𝑘))
5424, 47, 18, 48, 53ltletrd 10048 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) < (𝐴𝑘))
5524, 18, 45, 54ltmul1dd 11759 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < ((𝐴𝑘) · (𝐴𝑘)))
5623recnd 9924 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
57562timesd 11122 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
5857oveq2d 6543 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) = (𝐴↑(𝑘 + 𝑘)))
5926recnd 9924 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6059, 49, 49expaddd 12827 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 𝑘)) = ((𝐴𝑘) · (𝐴𝑘)))
6158, 60eqtrd 2643 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) = ((𝐴𝑘) · (𝐴𝑘)))
6255, 61breqtrrd 4605 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < (𝐴↑(2 · 𝑘)))
63 ostth2lem1.3 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))
6463ralrimiva 2948 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵))
6564ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵))
66 oveq2 6535 . . . . . . . . . . . 12 (𝑛 = (2 · 𝑘) → (𝐴𝑛) = (𝐴↑(2 · 𝑘)))
67 oveq1 6534 . . . . . . . . . . . 12 (𝑛 = (2 · 𝑘) → (𝑛 · 𝐵) = ((2 · 𝑘) · 𝐵))
6866, 67breq12d 4590 . . . . . . . . . . 11 (𝑛 = (2 · 𝑘) → ((𝐴𝑛) ≤ (𝑛 · 𝐵) ↔ (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵)))
6968rspcv 3277 . . . . . . . . . 10 ((2 · 𝑘) ∈ ℕ → (∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵) → (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵)))
7030, 65, 69sylc 62 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵))
7125, 33, 36, 62, 70ltletrd 10048 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < ((2 · 𝑘) · 𝐵))
7221recnd 9924 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴 − 1) ∈ ℂ)
7318recnd 9924 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
7472, 73, 56mul32d 10097 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) = (((𝐴 − 1) · 𝑘) · (𝐴𝑘)))
75 2cnd 10940 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
7635recnd 9924 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
7775, 76, 56mul32d 10097 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝐵) · 𝑘) = ((2 · 𝑘) · 𝐵))
7871, 74, 773brtr4d 4609 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘))
7921, 18remulcld 9926 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · (𝐴𝑘)) ∈ ℝ)
805adantr 479 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝐵) ∈ ℝ)
81 nngt0 10896 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 < 𝑘)
8281adantl 480 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
83 ltmul1 10722 . . . . . . . 8 ((((𝐴 − 1) · (𝐴𝑘)) ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘)))
8479, 80, 23, 82, 83syl112anc 1321 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘)))
8578, 84mpbird 245 . . . . . 6 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵))
8612rpgt0d 11707 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐴) → 0 < (𝐴 − 1))
8786adantr 479 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 < (𝐴 − 1))
88 ltmuldiv2 10746 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ ∧ ((𝐴 − 1) ∈ ℝ ∧ 0 < (𝐴 − 1))) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1))))
8918, 80, 21, 87, 88syl112anc 1321 . . . . . 6 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1))))
9085, 89mpbid 220 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1)))
9118, 19, 90ltnsymd 10037 . . . 4 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ¬ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
9291nrexdv 2983 . . 3 ((𝜑 ∧ 1 < 𝐴) → ¬ ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
9315, 92pm2.65da 597 . 2 (𝜑 → ¬ 1 < 𝐴)
94 lenlt 9967 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ↔ ¬ 1 < 𝐴))
958, 7, 94sylancl 692 . 2 (𝜑 → (𝐴 ≤ 1 ↔ ¬ 1 < 𝐴))
9693, 95mpbird 245 1 (𝜑𝐴 ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  wrex 2896   class class class wbr 4577  (class class class)co 6527  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  0cn0 11139  cz 11210  +crp 11664  cexp 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fl 12410  df-seq 12619  df-exp 12678
This theorem is referenced by:  ostth2lem4  25042
  Copyright terms: Public domain W3C validator