MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem1 Structured version   Visualization version   GIF version

Theorem ostth2lem1 26193
Description: Lemma for ostth2 26212, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 26212. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 𝑛𝑜(𝐴𝑛) for any 1 < 𝐴. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ostth2lem1.1 (𝜑𝐴 ∈ ℝ)
ostth2lem1.2 (𝜑𝐵 ∈ ℝ)
ostth2lem1.3 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))
Assertion
Ref Expression
ostth2lem1 (𝜑𝐴 ≤ 1)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem ostth2lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2re 11710 . . . . . 6 2 ∈ ℝ
2 ostth2lem1.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
32adantr 483 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → 𝐵 ∈ ℝ)
4 remulcl 10621 . . . . . 6 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
51, 3, 4sylancr 589 . . . . 5 ((𝜑 ∧ 1 < 𝐴) → (2 · 𝐵) ∈ ℝ)
6 simpr 487 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → 1 < 𝐴)
7 1re 10640 . . . . . . 7 1 ∈ ℝ
8 ostth2lem1.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
98adantr 483 . . . . . . 7 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
10 difrp 12426 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐴 ↔ (𝐴 − 1) ∈ ℝ+))
117, 9, 10sylancr 589 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → (1 < 𝐴 ↔ (𝐴 − 1) ∈ ℝ+))
126, 11mpbid 234 . . . . 5 ((𝜑 ∧ 1 < 𝐴) → (𝐴 − 1) ∈ ℝ+)
135, 12rerpdivcld 12461 . . . 4 ((𝜑 ∧ 1 < 𝐴) → ((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ)
14 expnbnd 13592 . . . 4 ((((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
1513, 9, 6, 14syl3anc 1367 . . 3 ((𝜑 ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
16 nnnn0 11903 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
17 reexpcl 13445 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
189, 16, 17syl2an 597 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℝ)
1913adantr 483 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ)
2012rpred 12430 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → (𝐴 − 1) ∈ ℝ)
2120adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴 − 1) ∈ ℝ)
22 nnre 11644 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2322adantl 484 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
2421, 23remulcld 10670 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) ∈ ℝ)
2524, 18remulcld 10670 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) ∈ ℝ)
268ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
27 2nn 11709 . . . . . . . . . . . 12 2 ∈ ℕ
28 simpr 487 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
29 nnmulcl 11660 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
3027, 28, 29sylancr 589 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
3130nnnn0d 11954 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ0)
3226, 31reexpcld 13526 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) ∈ ℝ)
3330nnred 11652 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
342ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
3533, 34remulcld 10670 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · 𝐵) ∈ ℝ)
36 0red 10643 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 0 ∈ ℝ)
377a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 1 ∈ ℝ)
38 0lt1 11161 . . . . . . . . . . . . . . 15 0 < 1
3938a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 0 < 1)
4036, 37, 9, 39, 6lttrd 10800 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < 𝐴) → 0 < 𝐴)
419, 40elrpd 12427 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
42 nnz 12003 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
43 rpexpcl 13447 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑘 ∈ ℤ) → (𝐴𝑘) ∈ ℝ+)
4441, 42, 43syl2an 597 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℝ+)
45 peano2re 10812 . . . . . . . . . . . . 13 (((𝐴 − 1) · 𝑘) ∈ ℝ → (((𝐴 − 1) · 𝑘) + 1) ∈ ℝ)
4624, 45syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) + 1) ∈ ℝ)
4724ltp1d 11569 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) < (((𝐴 − 1) · 𝑘) + 1))
4816adantl 484 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
4941adantr 483 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ+)
5049rpge0d 12434 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
51 bernneq2 13590 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑘) + 1) ≤ (𝐴𝑘))
5226, 48, 50, 51syl3anc 1367 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) + 1) ≤ (𝐴𝑘))
5324, 46, 18, 47, 52ltletrd 10799 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) < (𝐴𝑘))
5424, 18, 44, 53ltmul1dd 12485 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < ((𝐴𝑘) · (𝐴𝑘)))
5523recnd 10668 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
56552timesd 11879 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
5756oveq2d 7171 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) = (𝐴↑(𝑘 + 𝑘)))
5826recnd 10668 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
5958, 48, 48expaddd 13511 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 𝑘)) = ((𝐴𝑘) · (𝐴𝑘)))
6057, 59eqtrd 2856 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) = ((𝐴𝑘) · (𝐴𝑘)))
6154, 60breqtrrd 5093 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < (𝐴↑(2 · 𝑘)))
62 oveq2 7163 . . . . . . . . . . 11 (𝑛 = (2 · 𝑘) → (𝐴𝑛) = (𝐴↑(2 · 𝑘)))
63 oveq1 7162 . . . . . . . . . . 11 (𝑛 = (2 · 𝑘) → (𝑛 · 𝐵) = ((2 · 𝑘) · 𝐵))
6462, 63breq12d 5078 . . . . . . . . . 10 (𝑛 = (2 · 𝑘) → ((𝐴𝑛) ≤ (𝑛 · 𝐵) ↔ (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵)))
65 ostth2lem1.3 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))
6665ralrimiva 3182 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵))
6766ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵))
6864, 67, 30rspcdva 3624 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵))
6925, 32, 35, 61, 68ltletrd 10799 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < ((2 · 𝑘) · 𝐵))
7021recnd 10668 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴 − 1) ∈ ℂ)
7118recnd 10668 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
7270, 71, 55mul32d 10849 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) = (((𝐴 − 1) · 𝑘) · (𝐴𝑘)))
73 2cnd 11714 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
7434recnd 10668 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
7573, 74, 55mul32d 10849 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝐵) · 𝑘) = ((2 · 𝑘) · 𝐵))
7669, 72, 753brtr4d 5097 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘))
7721, 18remulcld 10670 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · (𝐴𝑘)) ∈ ℝ)
785adantr 483 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝐵) ∈ ℝ)
79 nngt0 11667 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 < 𝑘)
8079adantl 484 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
81 ltmul1 11489 . . . . . . . 8 ((((𝐴 − 1) · (𝐴𝑘)) ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘)))
8277, 78, 23, 80, 81syl112anc 1370 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘)))
8376, 82mpbird 259 . . . . . 6 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵))
8412rpgt0d 12433 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐴) → 0 < (𝐴 − 1))
8584adantr 483 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 < (𝐴 − 1))
86 ltmuldiv2 11513 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ ∧ ((𝐴 − 1) ∈ ℝ ∧ 0 < (𝐴 − 1))) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1))))
8718, 78, 21, 85, 86syl112anc 1370 . . . . . 6 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1))))
8883, 87mpbid 234 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1)))
8918, 19, 88ltnsymd 10788 . . . 4 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ¬ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
9089nrexdv 3270 . . 3 ((𝜑 ∧ 1 < 𝐴) → ¬ ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
9115, 90pm2.65da 815 . 2 (𝜑 → ¬ 1 < 𝐴)
92 lenlt 10718 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ↔ ¬ 1 < 𝐴))
938, 7, 92sylancl 588 . 2 (𝜑 → (𝐴 ≤ 1 ↔ ¬ 1 < 𝐴))
9491, 93mpbird 259 1 (𝜑𝐴 ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139   class class class wbr 5065  (class class class)co 7155  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  +crp 12388  cexp 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fl 13161  df-seq 13369  df-exp 13429
This theorem is referenced by:  ostth2lem4  26211
  Copyright terms: Public domain W3C validator