MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem3 Structured version   Visualization version   GIF version

Theorem ostth2lem3 25258
Description: Lemma for ostth2 25260. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
ostth2.5 (𝜑𝑀 ∈ (ℤ‘2))
ostth2.6 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
ostth2.7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
ostth2.8 𝑈 = ((log‘𝑁) / (log‘𝑀))
Assertion
Ref Expression
ostth2lem3 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑞,𝜑   𝑥,𝑇   𝑥,𝑈   𝑥,𝑋   𝐴,𝑞,𝑥   𝑥,𝑁   𝑥,𝑄   𝐹,𝑞   𝑅,𝑞   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝑆(𝑥,𝑞)   𝑇(𝑞)   𝑈(𝑞)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑞)   𝑀(𝑞)   𝑁(𝑞)   𝑋(𝑞)

Proof of Theorem ostth2lem3
StepHypRef Expression
1 ostth.1 . . . . . 6 (𝜑𝐹𝐴)
2 ostth2.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘2))
3 eluz2b2 11721 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
42, 3sylib 208 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
54simpld 475 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
6 nnq 11761 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
75, 6syl 17 . . . . . 6 (𝜑𝑁 ∈ ℚ)
8 qabsabv.a . . . . . . 7 𝐴 = (AbsVal‘𝑄)
9 qrng.q . . . . . . . 8 𝑄 = (ℂflds ℚ)
109qrngbas 25242 . . . . . . 7 ℚ = (Base‘𝑄)
118, 10abvcl 18764 . . . . . 6 ((𝐹𝐴𝑁 ∈ ℚ) → (𝐹𝑁) ∈ ℝ)
121, 7, 11syl2anc 692 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
1312adantr 481 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
1413recnd 10028 . . 3 ((𝜑𝑋 ∈ ℕ) → (𝐹𝑁) ∈ ℂ)
15 ostth2.7 . . . . . . 7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
16 1re 9999 . . . . . . . 8 1 ∈ ℝ
17 ostth2.5 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘2))
18 eluz2b2 11721 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 1 < 𝑀))
1917, 18sylib 208 . . . . . . . . . . 11 (𝜑 → (𝑀 ∈ ℕ ∧ 1 < 𝑀))
2019simpld 475 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
21 nnq 11761 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
2220, 21syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ ℚ)
238, 10abvcl 18764 . . . . . . . . 9 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
241, 22, 23syl2anc 692 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ ℝ)
25 ifcl 4108 . . . . . . . 8 ((1 ∈ ℝ ∧ (𝐹𝑀) ∈ ℝ) → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
2616, 24, 25sylancr 694 . . . . . . 7 (𝜑 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
2715, 26syl5eqel 2702 . . . . . 6 (𝜑𝑇 ∈ ℝ)
2827adantr 481 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 𝑇 ∈ ℝ)
29 0red 10001 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
30 1red 10015 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
31 0lt1 10510 . . . . . . . . . 10 0 < 1
3231a1i 11 . . . . . . . . 9 (𝜑 → 0 < 1)
33 max2 11977 . . . . . . . . . . 11 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
3424, 30, 33syl2anc 692 . . . . . . . . . 10 (𝜑 → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
3534, 15syl6breqr 4665 . . . . . . . . 9 (𝜑 → 1 ≤ 𝑇)
3629, 30, 27, 32, 35ltletrd 10157 . . . . . . . 8 (𝜑 → 0 < 𝑇)
3736adantr 481 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑇)
3828, 37elrpd 11829 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → 𝑇 ∈ ℝ+)
3938rpge0d 11836 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 0 ≤ 𝑇)
40 ostth2.8 . . . . . . . 8 𝑈 = ((log‘𝑁) / (log‘𝑀))
415nnred 10995 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
424simprd 479 . . . . . . . . . 10 (𝜑 → 1 < 𝑁)
4341, 42rplogcld 24313 . . . . . . . . 9 (𝜑 → (log‘𝑁) ∈ ℝ+)
4420nnred 10995 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
4519simprd 479 . . . . . . . . . 10 (𝜑 → 1 < 𝑀)
4644, 45rplogcld 24313 . . . . . . . . 9 (𝜑 → (log‘𝑀) ∈ ℝ+)
4743, 46rpdivcld 11849 . . . . . . . 8 (𝜑 → ((log‘𝑁) / (log‘𝑀)) ∈ ℝ+)
4840, 47syl5eqel 2702 . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
4948rpred 11832 . . . . . 6 (𝜑𝑈 ∈ ℝ)
5049adantr 481 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 𝑈 ∈ ℝ)
5128, 39, 50recxpcld 24403 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ∈ ℝ)
5251recnd 10028 . . 3 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ∈ ℂ)
5338, 50rpcxpcld 24410 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ∈ ℝ+)
5453rpne0d 11837 . . 3 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ≠ 0)
55 nnnn0 11259 . . . 4 (𝑋 ∈ ℕ → 𝑋 ∈ ℕ0)
5655adantl 482 . . 3 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℕ0)
5714, 52, 54, 56expdivd 12978 . 2 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑋) = (((𝐹𝑁)↑𝑋) / ((𝑇𝑐𝑈)↑𝑋)))
58 reexpcl 12833 . . . . . 6 (((𝐹𝑁) ∈ ℝ ∧ 𝑋 ∈ ℕ0) → ((𝐹𝑁)↑𝑋) ∈ ℝ)
5912, 55, 58syl2an 494 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ∈ ℝ)
6020adantr 481 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℕ)
6160nnred 10995 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℝ)
62 nnre 10987 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
6362adantl 482 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℝ)
6463, 50remulcld 10030 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 𝑈) ∈ ℝ)
6556nn0ge0d 11314 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 ≤ 𝑋)
6648rpge0d 11836 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑈)
6766adantr 481 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 ≤ 𝑈)
6863, 50, 65, 67mulge0d 10564 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 0 ≤ (𝑋 · 𝑈))
69 flge0nn0 12577 . . . . . . . . . 10 (((𝑋 · 𝑈) ∈ ℝ ∧ 0 ≤ (𝑋 · 𝑈)) → (⌊‘(𝑋 · 𝑈)) ∈ ℕ0)
7064, 68, 69syl2anc 692 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ∈ ℕ0)
71 peano2nn0 11293 . . . . . . . . 9 ((⌊‘(𝑋 · 𝑈)) ∈ ℕ0 → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0)
7270, 71syl 17 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0)
7372nn0red 11312 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℝ)
7461, 73remulcld 10030 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ)
7528, 72reexpcld 12981 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ)
7674, 75remulcld 10030 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ∈ ℝ)
77 peano2re 10169 . . . . . . . . 9 (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ)
7850, 77syl 17 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑈 + 1) ∈ ℝ)
7963, 78remulcld 10030 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) ∈ ℝ)
8061, 79remulcld 10030 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℝ)
8151, 56reexpcld 12981 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑋) ∈ ℝ)
8281, 28remulcld 10030 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ∈ ℝ)
8380, 82remulcld 10030 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)) ∈ ℝ)
841adantr 481 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → 𝐹𝐴)
857adantr 481 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → 𝑁 ∈ ℚ)
869, 8qabvexp 25249 . . . . . . 7 ((𝐹𝐴𝑁 ∈ ℚ ∧ 𝑋 ∈ ℕ0) → (𝐹‘(𝑁𝑋)) = ((𝐹𝑁)↑𝑋))
8784, 85, 56, 86syl3anc 1323 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝐹‘(𝑁𝑋)) = ((𝐹𝑁)↑𝑋))
8863recnd 10028 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℂ)
8943rpred 11832 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘𝑁) ∈ ℝ)
9089recnd 10028 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘𝑁) ∈ ℂ)
9190adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → (log‘𝑁) ∈ ℂ)
9246rpred 11832 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘𝑀) ∈ ℝ)
9392recnd 10028 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘𝑀) ∈ ℂ)
9493adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ∈ ℂ)
9546adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ∈ ℝ+)
9695rpne0d 11837 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ≠ 0)
9788, 91, 94, 96divassd 10796 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · (log‘𝑁)) / (log‘𝑀)) = (𝑋 · ((log‘𝑁) / (log‘𝑀))))
9840oveq2i 6626 . . . . . . . . . . . . . . 15 (𝑋 · 𝑈) = (𝑋 · ((log‘𝑁) / (log‘𝑀)))
9997, 98syl6eqr 2673 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · (log‘𝑁)) / (log‘𝑀)) = (𝑋 · 𝑈))
10099oveq1d 6630 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (((𝑋 · (log‘𝑁)) / (log‘𝑀)) · (log‘𝑀)) = ((𝑋 · 𝑈) · (log‘𝑀)))
10188, 91mulcld 10020 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (log‘𝑁)) ∈ ℂ)
102101, 94, 96divcan1d 10762 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (((𝑋 · (log‘𝑁)) / (log‘𝑀)) · (log‘𝑀)) = (𝑋 · (log‘𝑁)))
103100, 102eqtr3d 2657 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) · (log‘𝑀)) = (𝑋 · (log‘𝑁)))
104 flltp1 12557 . . . . . . . . . . . . . 14 ((𝑋 · 𝑈) ∈ ℝ → (𝑋 · 𝑈) < ((⌊‘(𝑋 · 𝑈)) + 1))
10564, 104syl 17 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 𝑈) < ((⌊‘(𝑋 · 𝑈)) + 1))
10664, 73, 95, 105ltmul1dd 11887 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) · (log‘𝑀)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))
107103, 106eqbrtrrd 4647 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (log‘𝑁)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))
10889adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (log‘𝑁) ∈ ℝ)
10963, 108remulcld 10030 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (log‘𝑁)) ∈ ℝ)
11092adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ∈ ℝ)
11173, 110remulcld 10030 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ∈ ℝ)
112 eflt 14791 . . . . . . . . . . . 12 (((𝑋 · (log‘𝑁)) ∈ ℝ ∧ (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ∈ ℝ) → ((𝑋 · (log‘𝑁)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ↔ (exp‘(𝑋 · (log‘𝑁))) < (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))))
113109, 111, 112syl2anc 692 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · (log‘𝑁)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ↔ (exp‘(𝑋 · (log‘𝑁))) < (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))))
114107, 113mpbid 222 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (exp‘(𝑋 · (log‘𝑁))) < (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀))))
1155nnrpd 11830 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ+)
116 nnz 11359 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℤ)
117 reexplog 24279 . . . . . . . . . . 11 ((𝑁 ∈ ℝ+𝑋 ∈ ℤ) → (𝑁𝑋) = (exp‘(𝑋 · (log‘𝑁))))
118115, 116, 117syl2an 494 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) = (exp‘(𝑋 · (log‘𝑁))))
11960nnrpd 11830 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℝ+)
12072nn0zd 11440 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℤ)
121 reexplog 24279 . . . . . . . . . . 11 ((𝑀 ∈ ℝ+ ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℤ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) = (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀))))
122119, 120, 121syl2anc 692 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) = (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀))))
123114, 118, 1223brtr4d 4655 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) < (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)))
124 nnexpcl 12829 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ0) → (𝑁𝑋) ∈ ℕ)
1255, 55, 124syl2an 494 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ ℕ)
12660, 72nnexpcld 12986 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℕ)
127 nnltlem1 11404 . . . . . . . . . 10 (((𝑁𝑋) ∈ ℕ ∧ (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℕ) → ((𝑁𝑋) < (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
128125, 126, 127syl2anc 692 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑁𝑋) < (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
129123, 128mpbid 222 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1))
130125nnnn0d 11311 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ ℕ0)
131 nn0uz 11682 . . . . . . . . . 10 0 = (ℤ‘0)
132130, 131syl6eleq 2708 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ (ℤ‘0))
133126nnzd 11441 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℤ)
134 peano2zm 11380 . . . . . . . . . 10 ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℤ → ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1) ∈ ℤ)
135133, 134syl 17 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1) ∈ ℤ)
136 elfz5 12292 . . . . . . . . 9 (((𝑁𝑋) ∈ (ℤ‘0) ∧ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1) ∈ ℤ) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
137132, 135, 136syl2anc 692 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
138129, 137mpbird 247 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
139 padic.j . . . . . . . . . 10 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
140 ostth.k . . . . . . . . . 10 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
141 ostth2.3 . . . . . . . . . 10 (𝜑 → 1 < (𝐹𝑁))
142 ostth2.4 . . . . . . . . . 10 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
143 ostth2.6 . . . . . . . . . 10 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
1449, 8, 139, 140, 1, 2, 141, 142, 17, 143, 15ostth2lem2 25257 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0 ∧ (𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1))) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
1451443expia 1264 . . . . . . . 8 ((𝜑 ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
14672, 145syldan 487 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
147138, 146mpd 15 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
14887, 147eqbrtrrd 4647 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
14980, 75remulcld 10030 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ∈ ℝ)
150 peano2re 10169 . . . . . . . . . 10 ((𝑋 · 𝑈) ∈ ℝ → ((𝑋 · 𝑈) + 1) ∈ ℝ)
15164, 150syl 17 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + 1) ∈ ℝ)
15270nn0red 11312 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ∈ ℝ)
153 1red 10015 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 1 ∈ ℝ)
154 flle 12556 . . . . . . . . . . 11 ((𝑋 · 𝑈) ∈ ℝ → (⌊‘(𝑋 · 𝑈)) ≤ (𝑋 · 𝑈))
15564, 154syl 17 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ≤ (𝑋 · 𝑈))
156152, 64, 153, 155leadd1dd 10601 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ≤ ((𝑋 · 𝑈) + 1))
157 nnge1 11006 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → 1 ≤ 𝑋)
158157adantl 482 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 1 ≤ 𝑋)
159153, 63, 64, 158leadd2dd 10602 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + 1) ≤ ((𝑋 · 𝑈) + 𝑋))
16050recnd 10028 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → 𝑈 ∈ ℂ)
161153recnd 10028 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → 1 ∈ ℂ)
16288, 160, 161adddid 10024 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) = ((𝑋 · 𝑈) + (𝑋 · 1)))
16388mulid1d 10017 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 1) = 𝑋)
164163oveq2d 6631 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + (𝑋 · 1)) = ((𝑋 · 𝑈) + 𝑋))
165162, 164eqtrd 2655 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) = ((𝑋 · 𝑈) + 𝑋))
166159, 165breqtrrd 4651 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + 1) ≤ (𝑋 · (𝑈 + 1)))
16773, 151, 79, 156, 166letrd 10154 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ≤ (𝑋 · (𝑈 + 1)))
16860nngt0d 11024 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑀)
169 lemul2 10836 . . . . . . . . 9 ((((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℝ ∧ (𝑋 · (𝑈 + 1)) ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → (((⌊‘(𝑋 · 𝑈)) + 1) ≤ (𝑋 · (𝑈 + 1)) ↔ (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1)))))
17073, 79, 61, 168, 169syl112anc 1327 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (((⌊‘(𝑋 · 𝑈)) + 1) ≤ (𝑋 · (𝑈 + 1)) ↔ (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1)))))
171167, 170mpbid 222 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1))))
172 expgt0 12849 . . . . . . . . 9 ((𝑇 ∈ ℝ ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℤ ∧ 0 < 𝑇) → 0 < (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))
17328, 120, 37, 172syl3anc 1323 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))
174 lemul1 10835 . . . . . . . 8 (((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ ∧ (𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℝ ∧ ((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ ∧ 0 < (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1))) ↔ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
17574, 80, 75, 173, 174syl112anc 1327 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1))) ↔ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
176171, 175mpbid 222 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
17728recnd 10028 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → 𝑇 ∈ ℂ)
178177, 70expp1d 12965 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) = ((𝑇↑(⌊‘(𝑋 · 𝑈))) · 𝑇))
17935adantr 481 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 1 ≤ 𝑇)
180 remulcl 9981 . . . . . . . . . . . 12 ((𝑈 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑈 · 𝑋) ∈ ℝ)
18149, 62, 180syl2an 494 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑈 · 𝑋) ∈ ℝ)
18288, 160mulcomd 10021 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 𝑈) = (𝑈 · 𝑋))
183155, 182breqtrd 4649 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ≤ (𝑈 · 𝑋))
18428, 179, 152, 181, 183cxplead 24401 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(⌊‘(𝑋 · 𝑈))) ≤ (𝑇𝑐(𝑈 · 𝑋)))
185 cxpexp 24348 . . . . . . . . . . 11 ((𝑇 ∈ ℂ ∧ (⌊‘(𝑋 · 𝑈)) ∈ ℕ0) → (𝑇𝑐(⌊‘(𝑋 · 𝑈))) = (𝑇↑(⌊‘(𝑋 · 𝑈))))
186177, 70, 185syl2anc 692 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(⌊‘(𝑋 · 𝑈))) = (𝑇↑(⌊‘(𝑋 · 𝑈))))
18738, 50, 88cxpmuld 24414 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(𝑈 · 𝑋)) = ((𝑇𝑐𝑈)↑𝑐𝑋))
188 cxpexp 24348 . . . . . . . . . . . 12 (((𝑇𝑐𝑈) ∈ ℂ ∧ 𝑋 ∈ ℕ0) → ((𝑇𝑐𝑈)↑𝑐𝑋) = ((𝑇𝑐𝑈)↑𝑋))
18952, 56, 188syl2anc 692 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑐𝑋) = ((𝑇𝑐𝑈)↑𝑋))
190187, 189eqtrd 2655 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(𝑈 · 𝑋)) = ((𝑇𝑐𝑈)↑𝑋))
191184, 186, 1903brtr3d 4654 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (𝑇↑(⌊‘(𝑋 · 𝑈))) ≤ ((𝑇𝑐𝑈)↑𝑋))
19228, 70reexpcld 12981 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇↑(⌊‘(𝑋 · 𝑈))) ∈ ℝ)
193192, 81, 38lemul1d 11875 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑇↑(⌊‘(𝑋 · 𝑈))) ≤ ((𝑇𝑐𝑈)↑𝑋) ↔ ((𝑇↑(⌊‘(𝑋 · 𝑈))) · 𝑇) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
194191, 193mpbid 222 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((𝑇↑(⌊‘(𝑋 · 𝑈))) · 𝑇) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇))
195178, 194eqbrtrd 4645 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇))
196 nngt0 11009 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 0 < 𝑋)
197196adantl 482 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑋)
198 0red 10001 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 ∈ ℝ)
19948adantr 481 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → 𝑈 ∈ ℝ+)
200199rpgt0d 11835 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑈)
20150ltp1d 10914 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 𝑈 < (𝑈 + 1))
202198, 50, 78, 200, 201lttrd 10158 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑈 + 1))
20363, 78, 197, 202mulgt0d 10152 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑋 · (𝑈 + 1)))
20461, 79, 168, 203mulgt0d 10152 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑀 · (𝑋 · (𝑈 + 1))))
205 lemul2 10836 . . . . . . . 8 (((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ ∧ (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ∈ ℝ ∧ ((𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℝ ∧ 0 < (𝑀 · (𝑋 · (𝑈 + 1))))) → ((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ↔ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇))))
20675, 82, 80, 204, 205syl112anc 1327 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ↔ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇))))
207195, 206mpbid 222 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
20876, 149, 83, 176, 207letrd 10154 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
20959, 76, 83, 148, 208letrd 10154 . . . 4 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
21080recnd 10028 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℂ)
21181recnd 10028 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑋) ∈ ℂ)
212210, 211, 177mul12d 10205 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)) = (((𝑇𝑐𝑈)↑𝑋) · ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇)))
21361recnd 10028 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℂ)
21479recnd 10028 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) ∈ ℂ)
215213, 214, 177mul32d 10206 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇) = ((𝑀 · 𝑇) · (𝑋 · (𝑈 + 1))))
216213, 177mulcld 10020 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑀 · 𝑇) ∈ ℂ)
21778recnd 10028 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑈 + 1) ∈ ℂ)
218216, 88, 217mul12d 10205 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · 𝑇) · (𝑋 · (𝑈 + 1))) = (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
219215, 218eqtrd 2655 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇) = (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
220219oveq2d 6631 . . . . 5 ((𝜑𝑋 ∈ ℕ) → (((𝑇𝑐𝑈)↑𝑋) · ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇)) = (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))))
221212, 220eqtrd 2655 . . . 4 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)) = (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))))
222209, 221breqtrd 4649 . . 3 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ≤ (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))))
22361, 28remulcld 10030 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · 𝑇) ∈ ℝ)
224223, 78remulcld 10030 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · 𝑇) · (𝑈 + 1)) ∈ ℝ)
22563, 224remulcld 10030 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))) ∈ ℝ)
226116adantl 482 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℤ)
22753, 226rpexpcld 12988 . . . 4 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑋) ∈ ℝ+)
22859, 225, 227ledivmuld 11885 . . 3 ((𝜑𝑋 ∈ ℕ) → ((((𝐹𝑁)↑𝑋) / ((𝑇𝑐𝑈)↑𝑋)) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))) ↔ ((𝐹𝑁)↑𝑋) ≤ (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))))
229222, 228mpbird 247 . 2 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁)↑𝑋) / ((𝑇𝑐𝑈)↑𝑋)) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
23057, 229eqbrtrd 4645 1 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  ifcif 4064   class class class wbr 4623  cmpt 4683  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901   < clt 10034  cle 10035  cmin 10226  -cneg 10227   / cdiv 10644  cn 10980  2c2 11030  0cn0 11252  cz 11337  cuz 11647  cq 11748  +crp 11792  ...cfz 12284  cfl 12547  cexp 12816  expce 14736  cprime 15328   pCnt cpc 15484  s cress 15801  AbsValcabv 18756  fldccnfld 19686  logclog 24239  𝑐ccxp 24240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ioc 12138  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-fac 13017  df-bc 13046  df-hash 13074  df-shft 13757  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367  df-ef 14742  df-sin 14744  df-cos 14745  df-pi 14747  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-minusg 17366  df-mulg 17481  df-subg 17531  df-cntz 17690  df-cmn 18135  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-dvr 18623  df-drng 18689  df-subrg 18718  df-abv 18757  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cncf 22621  df-limc 23570  df-dv 23571  df-log 24241  df-cxp 24242
This theorem is referenced by:  ostth2lem4  25259
  Copyright terms: Public domain W3C validator