MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem1 Structured version   Visualization version   GIF version

Theorem ostthlem1 25216
Description: Lemma for ostth 25228. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
ostthlem1.1 (𝜑𝐹𝐴)
ostthlem1.2 (𝜑𝐺𝐴)
ostthlem1.3 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
Assertion
Ref Expression
ostthlem1 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑛,𝐺   𝜑,𝑛   𝐴,𝑛   𝑄,𝑛   𝑛,𝐹

Proof of Theorem ostthlem1
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostthlem1.1 . . 3 (𝜑𝐹𝐴)
2 qabsabv.a . . . 4 𝐴 = (AbsVal‘𝑄)
3 qrng.q . . . . 5 𝑄 = (ℂflds ℚ)
43qrngbas 25208 . . . 4 ℚ = (Base‘𝑄)
52, 4abvf 18744 . . 3 (𝐹𝐴𝐹:ℚ⟶ℝ)
6 ffn 6002 . . 3 (𝐹:ℚ⟶ℝ → 𝐹 Fn ℚ)
71, 5, 63syl 18 . 2 (𝜑𝐹 Fn ℚ)
8 ostthlem1.2 . . 3 (𝜑𝐺𝐴)
92, 4abvf 18744 . . 3 (𝐺𝐴𝐺:ℚ⟶ℝ)
10 ffn 6002 . . 3 (𝐺:ℚ⟶ℝ → 𝐺 Fn ℚ)
118, 9, 103syl 18 . 2 (𝜑𝐺 Fn ℚ)
12 elq 11734 . . . 4 (𝑦 ∈ ℚ ↔ ∃𝑘 ∈ ℤ ∃𝑛 ∈ ℕ 𝑦 = (𝑘 / 𝑛))
133qdrng 25209 . . . . . . . . . 10 𝑄 ∈ DivRing
1413a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑄 ∈ DivRing)
151adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝐹𝐴)
16 zq 11738 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℚ)
1716ad2antrl 763 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑘 ∈ ℚ)
18 nnq 11745 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
1918ad2antll 764 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑛 ∈ ℚ)
20 nnne0 10997 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
2120ad2antll 764 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑛 ≠ 0)
223qrng0 25210 . . . . . . . . . 10 0 = (0g𝑄)
23 eqid 2621 . . . . . . . . . 10 (/r𝑄) = (/r𝑄)
242, 4, 22, 23abvdiv 18758 . . . . . . . . 9 (((𝑄 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
2514, 15, 17, 19, 21, 24syl23anc 1330 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
268adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝐺𝐴)
272, 4, 22, 23abvdiv 18758 . . . . . . . . . 10 (((𝑄 ∈ DivRing ∧ 𝐺𝐴) ∧ (𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
2814, 26, 17, 19, 21, 27syl23anc 1330 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
292, 22abv0 18752 . . . . . . . . . . . . . . . . 17 (𝐹𝐴 → (𝐹‘0) = 0)
301, 29syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘0) = 0)
312, 22abv0 18752 . . . . . . . . . . . . . . . . 17 (𝐺𝐴 → (𝐺‘0) = 0)
328, 31syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺‘0) = 0)
3330, 32eqtr4d 2658 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹‘0) = (𝐺‘0))
34 fveq2 6148 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
35 fveq2 6148 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝐺𝑘) = (𝐺‘0))
3634, 35eqeq12d 2636 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘0) = (𝐺‘0)))
3733, 36syl5ibrcom 237 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 = 0 → (𝐹𝑘) = (𝐺𝑘)))
3837adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → (𝑘 = 0 → (𝐹𝑘) = (𝐺𝑘)))
3938imp 445 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 = 0) → (𝐹𝑘) = (𝐺𝑘))
40 elnn1uz2 11709 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↔ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
413qrng1 25211 . . . . . . . . . . . . . . . . . . . . . 22 1 = (1r𝑄)
422, 41abv1 18754 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ DivRing ∧ 𝐹𝐴) → (𝐹‘1) = 1)
4313, 1, 42sylancr 694 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹‘1) = 1)
442, 41abv1 18754 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ DivRing ∧ 𝐺𝐴) → (𝐺‘1) = 1)
4513, 8, 44sylancr 694 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺‘1) = 1)
4643, 45eqtr4d 2658 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹‘1) = (𝐺‘1))
47 fveq2 6148 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
48 fveq2 6148 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
4947, 48eqeq12d 2636 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹‘1) = (𝐺‘1)))
5046, 49syl5ibrcom 237 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑛 = 1 → (𝐹𝑛) = (𝐺𝑛)))
5150imp 445 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 1) → (𝐹𝑛) = (𝐺𝑛))
52 ostthlem1.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
5351, 52jaodan 825 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2))) → (𝐹𝑛) = (𝐺𝑛))
5440, 53sylan2b 492 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐺𝑛))
5554ralrimiva 2960 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
5655adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
57 fveq2 6148 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
58 fveq2 6148 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
5957, 58eqeq12d 2636 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹𝑘) = (𝐺𝑘)))
6059rspccva 3294 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
6156, 60sylan 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
6255ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
6316adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℚ)
643qrngneg 25212 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℚ → ((invg𝑄)‘𝑘) = -𝑘)
6563, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℤ) → ((invg𝑄)‘𝑘) = -𝑘)
6665eleq1d 2683 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℤ) → (((invg𝑄)‘𝑘) ∈ ℕ ↔ -𝑘 ∈ ℕ))
6766biimpar 502 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → ((invg𝑄)‘𝑘) ∈ ℕ)
68 fveq2 6148 . . . . . . . . . . . . . . . 16 (𝑛 = ((invg𝑄)‘𝑘) → (𝐹𝑛) = (𝐹‘((invg𝑄)‘𝑘)))
69 fveq2 6148 . . . . . . . . . . . . . . . 16 (𝑛 = ((invg𝑄)‘𝑘) → (𝐺𝑛) = (𝐺‘((invg𝑄)‘𝑘)))
7068, 69eqeq12d 2636 . . . . . . . . . . . . . . 15 (𝑛 = ((invg𝑄)‘𝑘) → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘))))
7170rspccva 3294 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛) ∧ ((invg𝑄)‘𝑘) ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘)))
7262, 67, 71syl2anc 692 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘)))
731ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝐹𝐴)
7416ad2antlr 762 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝑘 ∈ ℚ)
75 eqid 2621 . . . . . . . . . . . . . . 15 (invg𝑄) = (invg𝑄)
762, 4, 75abvneg 18755 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑘 ∈ ℚ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐹𝑘))
7773, 74, 76syl2anc 692 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐹𝑘))
788ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝐺𝐴)
792, 4, 75abvneg 18755 . . . . . . . . . . . . . 14 ((𝐺𝐴𝑘 ∈ ℚ) → (𝐺‘((invg𝑄)‘𝑘)) = (𝐺𝑘))
8078, 74, 79syl2anc 692 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐺‘((invg𝑄)‘𝑘)) = (𝐺𝑘))
8172, 77, 803eqtr3d 2663 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
82 elz 11323 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↔ (𝑘 ∈ ℝ ∧ (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ)))
8382simprbi 480 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
8483adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
8539, 61, 81, 84mpjao3dan 1392 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐺𝑘))
8685adantrr 752 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹𝑘) = (𝐺𝑘))
8754adantrl 751 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹𝑛) = (𝐺𝑛))
8886, 87oveq12d 6622 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑘) / (𝐹𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
8928, 88eqtr4d 2658 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
9025, 89eqtr4d 2658 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = (𝐺‘(𝑘(/r𝑄)𝑛)))
913qrngdiv 25213 . . . . . . . . 9 ((𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0) → (𝑘(/r𝑄)𝑛) = (𝑘 / 𝑛))
9217, 19, 21, 91syl3anc 1323 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑘(/r𝑄)𝑛) = (𝑘 / 𝑛))
9392fveq2d 6152 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = (𝐹‘(𝑘 / 𝑛)))
9492fveq2d 6152 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = (𝐺‘(𝑘 / 𝑛)))
9590, 93, 943eqtr3d 2663 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘 / 𝑛)) = (𝐺‘(𝑘 / 𝑛)))
96 fveq2 6148 . . . . . . 7 (𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐹‘(𝑘 / 𝑛)))
97 fveq2 6148 . . . . . . 7 (𝑦 = (𝑘 / 𝑛) → (𝐺𝑦) = (𝐺‘(𝑘 / 𝑛)))
9896, 97eqeq12d 2636 . . . . . 6 (𝑦 = (𝑘 / 𝑛) → ((𝐹𝑦) = (𝐺𝑦) ↔ (𝐹‘(𝑘 / 𝑛)) = (𝐺‘(𝑘 / 𝑛))))
9995, 98syl5ibrcom 237 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐺𝑦)))
10099rexlimdvva 3031 . . . 4 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑛 ∈ ℕ 𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐺𝑦)))
10112, 100syl5bi 232 . . 3 (𝜑 → (𝑦 ∈ ℚ → (𝐹𝑦) = (𝐺𝑦)))
102101imp 445 . 2 ((𝜑𝑦 ∈ ℚ) → (𝐹𝑦) = (𝐺𝑦))
1037, 11, 102eqfnfvd 6270 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3o 1035   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  cz 11321  cuz 11631  cq 11732  s cress 15782  invgcminusg 17344  /rcdvr 18603  DivRingcdr 18668  AbsValcabv 18737  fldccnfld 19665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-ico 12123  df-fz 12269  df-seq 12742  df-exp 12801  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-subg 17512  df-cmn 18116  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-drng 18670  df-subrg 18699  df-abv 18738  df-cnfld 19666
This theorem is referenced by:  ostthlem2  25217  ostth2  25226
  Copyright terms: Public domain W3C validator