Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem10N Structured version   Visualization version   GIF version

Theorem osumcllem10N 35569
Description: Lemma for osumclN 35571. Contradict osumcllem9N 35568. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem10N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝑋)

Proof of Theorem osumcllem10N
StepHypRef Expression
1 simp11 1111 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
2 simp2 1082 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝐴)
32snssd 4372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ 𝐴)
4 simp12 1112 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐴)
5 osumcllem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
6 osumcllem.p . . . . . 6 + = (+𝑃𝐾)
75, 6sspadd2 35420 . . . . 5 ((𝐾 ∈ HL ∧ {𝑝} ⊆ 𝐴𝑋𝐴) → {𝑝} ⊆ (𝑋 + {𝑝}))
81, 3, 4, 7syl3anc 1366 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ (𝑋 + {𝑝}))
9 vex 3234 . . . . 5 𝑝 ∈ V
109snss 4348 . . . 4 (𝑝 ∈ (𝑋 + {𝑝}) ↔ {𝑝} ⊆ (𝑋 + {𝑝}))
118, 10sylibr 224 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ (𝑋 + {𝑝}))
12 osumcllem.m . . 3 𝑀 = (𝑋 + {𝑝})
1311, 12syl6eleqr 2741 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝑀)
145, 6sspadd1 35419 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
15143ad2ant1 1102 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (𝑋 + 𝑌))
16 simp3 1083 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
1715, 16ssneldd 3639 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝𝑋)
18 nelne1 2919 . 2 ((𝑝𝑀 ∧ ¬ 𝑝𝑋) → 𝑀𝑋)
1913, 17, 18syl2anc 694 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wss 3607  {csn 4210  cfv 5926  (class class class)co 6690  lecple 15995  joincjn 16991  Atomscatm 34868  HLchlt 34955  +𝑃cpadd 35399  𝑃cpolN 35506  PSubClcpscN 35538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-padd 35400
This theorem is referenced by:  osumcllem11N  35570
  Copyright terms: Public domain W3C validator