Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem11N Structured version   Visualization version   GIF version

Theorem osumcllem11N 35570
Description: Lemma for osumclN 35571. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p + = (+𝑃𝐾)
osumcl.o = (⊥𝑃𝐾)
osumcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
osumcllem11N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))

Proof of Theorem osumcllem11N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 2835 . 2 ¬ (𝑋 = 𝑋𝑋𝑋)
2 simpl1 1084 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝐾 ∈ HL)
3 simpl2 1085 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋𝐶)
4 eqid 2651 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 osumcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
64, 5psubclssatN 35545 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
72, 3, 6syl2anc 694 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋 ⊆ (Atoms‘𝐾))
8 simpl3 1086 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌𝐶)
94, 5psubclssatN 35545 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
102, 8, 9syl2anc 694 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌 ⊆ (Atoms‘𝐾))
11 osumcl.p . . . . . . 7 + = (+𝑃𝐾)
124, 11paddssat 35418 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
132, 7, 10, 12syl3anc 1366 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
14 osumcl.o . . . . . 6 = (⊥𝑃𝐾)
154, 142polssN 35519 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
162, 13, 15syl2anc 694 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
17 df-pss 3623 . . . . . . 7 ((𝑋 + 𝑌) ⊊ ( ‘( ‘(𝑋 + 𝑌))) ↔ ((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))))
18 pssnel 4072 . . . . . . 7 ((𝑋 + 𝑌) ⊊ ( ‘( ‘(𝑋 + 𝑌))) → ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
1917, 18sylbir 225 . . . . . 6 (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
20 df-rex 2947 . . . . . 6 (∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) ↔ ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
2119, 20sylibr 224 . . . . 5 (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → ∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌))
22 eqid 2651 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
23 eqid 2651 . . . . . . . . . . 11 (join‘𝐾) = (join‘𝐾)
24 eqid 2651 . . . . . . . . . . 11 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
25 eqid 2651 . . . . . . . . . . 11 ( ‘( ‘(𝑋 + 𝑌))) = ( ‘( ‘(𝑋 + 𝑌)))
2622, 23, 4, 11, 14, 5, 24, 25osumcllem9N 35568 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) = 𝑋)
27 simp11 1111 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
28 simp12 1112 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐶)
2927, 28, 6syl2anc 694 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾))
30 simp13 1113 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐶)
3127, 30, 9syl2anc 694 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾))
32133adantr3 1242 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))))) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
33323adant3 1101 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
344, 14polssatN 35512 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾))
3527, 33, 34syl2anc 694 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾))
364, 14polssatN 35512 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾))
3727, 35, 36syl2anc 694 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾))
38 simp23 1116 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))))
3937, 38sseldd 3637 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
40 simp3 1083 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
4122, 23, 4, 11, 14, 5, 24, 25osumcllem10N 35569 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋)
4227, 29, 31, 39, 40, 41syl311anc 1380 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋)
4326, 42pm2.21ddne 2907 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 = 𝑋𝑋𝑋))
44433exp 1283 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))
45443expd 1306 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋 ⊆ ( 𝑌) → (𝑋 ≠ ∅ → (𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))))
4645imp32 448 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))
4746rexlimdv 3059 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋)))
4821, 47syl5 34 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → (𝑋 = 𝑋𝑋𝑋)))
4916, 48mpand 711 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → ((𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌))) → (𝑋 = 𝑋𝑋𝑋)))
5049necon1bd 2841 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋𝑋𝑋) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌)))))
511, 50mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wrex 2942  wss 3607  wpss 3608  c0 3948  {csn 4210  cfv 5926  (class class class)co 6690  lecple 15995  joincjn 16991  Atomscatm 34868  HLchlt 34955  +𝑃cpadd 35399  𝑃cpolN 35506  PSubClcpscN 35538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-riotaBAD 34557
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-undef 7444  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-polarityN 35507  df-psubclN 35539
This theorem is referenced by:  osumclN  35571
  Copyright terms: Public domain W3C validator