Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem11N Structured version   Visualization version   GIF version

Theorem osumcllem11N 34064
Description: Lemma for osumclN 34065. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p + = (+𝑃𝐾)
osumcl.o = (⊥𝑃𝐾)
osumcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
osumcllem11N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))

Proof of Theorem osumcllem11N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 2794 . 2 ¬ (𝑋 = 𝑋𝑋𝑋)
2 simpl1 1057 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝐾 ∈ HL)
3 simpl2 1058 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋𝐶)
4 eqid 2610 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 osumcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
64, 5psubclssatN 34039 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
72, 3, 6syl2anc 691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋 ⊆ (Atoms‘𝐾))
8 simpl3 1059 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌𝐶)
94, 5psubclssatN 34039 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
102, 8, 9syl2anc 691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌 ⊆ (Atoms‘𝐾))
11 osumcl.p . . . . . . 7 + = (+𝑃𝐾)
124, 11paddssat 33912 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
132, 7, 10, 12syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
14 osumcl.o . . . . . 6 = (⊥𝑃𝐾)
154, 142polssN 34013 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
162, 13, 15syl2anc 691 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
17 df-pss 3556 . . . . . . 7 ((𝑋 + 𝑌) ⊊ ( ‘( ‘(𝑋 + 𝑌))) ↔ ((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))))
18 pssnel 3991 . . . . . . 7 ((𝑋 + 𝑌) ⊊ ( ‘( ‘(𝑋 + 𝑌))) → ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
1917, 18sylbir 224 . . . . . 6 (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
20 df-rex 2902 . . . . . 6 (∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) ↔ ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
2119, 20sylibr 223 . . . . 5 (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → ∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌))
22 eqid 2610 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
23 eqid 2610 . . . . . . . . . . 11 (join‘𝐾) = (join‘𝐾)
24 eqid 2610 . . . . . . . . . . 11 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
25 eqid 2610 . . . . . . . . . . 11 ( ‘( ‘(𝑋 + 𝑌))) = ( ‘( ‘(𝑋 + 𝑌)))
2622, 23, 4, 11, 14, 5, 24, 25osumcllem9N 34062 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) = 𝑋)
27 simp11 1084 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
28 simp12 1085 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐶)
2927, 28, 6syl2anc 691 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾))
30 simp13 1086 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐶)
3127, 30, 9syl2anc 691 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾))
32133adantr3 1215 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))))) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
33323adant3 1074 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
344, 14polssatN 34006 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾))
3527, 33, 34syl2anc 691 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾))
364, 14polssatN 34006 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾))
3727, 35, 36syl2anc 691 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾))
38 simp23 1089 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))))
3937, 38sseldd 3569 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
40 simp3 1056 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
4122, 23, 4, 11, 14, 5, 24, 25osumcllem10N 34063 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋)
4227, 29, 31, 39, 40, 41syl311anc 1332 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋)
4326, 42pm2.21ddne 2866 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 = 𝑋𝑋𝑋))
44433exp 1256 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))
45443expd 1276 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋 ⊆ ( 𝑌) → (𝑋 ≠ ∅ → (𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))))
4645imp32 448 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))
4746rexlimdv 3012 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋)))
4821, 47syl5 33 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → (𝑋 = 𝑋𝑋𝑋)))
4916, 48mpand 707 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → ((𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌))) → (𝑋 = 𝑋𝑋𝑋)))
5049necon1bd 2800 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋𝑋𝑋) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌)))))
511, 50mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  wss 3540  wpss 3541  c0 3874  {csn 4125  cfv 5790  (class class class)co 6527  lecple 15724  joincjn 16716  Atomscatm 33362  HLchlt 33449  +𝑃cpadd 33893  𝑃cpolN 34000  PSubClcpscN 34032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-riotaBAD 33051
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-undef 7264  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-p1 16812  df-lat 16818  df-clat 16880  df-oposet 33275  df-ol 33277  df-oml 33278  df-covers 33365  df-ats 33366  df-atl 33397  df-cvlat 33421  df-hlat 33450  df-psubsp 33601  df-pmap 33602  df-padd 33894  df-polarityN 34001  df-psubclN 34033
This theorem is referenced by:  osumclN  34065
  Copyright terms: Public domain W3C validator