MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq2d Structured version   Visualization version   GIF version

Theorem oteq2d 4390
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
oteq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
oteq2d (𝜑 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)

Proof of Theorem oteq2d
StepHypRef Expression
1 oteq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 oteq2 4387 . 2 (𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)
31, 2syl 17 1 (𝜑 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  cotp 4163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-ot 4164
This theorem is referenced by:  oteq123d  4392  mapdh9a  36598  mapdh9aOLDN  36599  hdmap1eulem  36632  hdmap1eulemOLDN  36633  hdmapffval  36637  hdmapfval  36638  hdmapval2  36643
  Copyright terms: Public domain W3C validator