MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteqex Structured version   Visualization version   GIF version

Theorem oteqex 5381
Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
oteqex (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V)))

Proof of Theorem oteqex
StepHypRef Expression
1 simp3 1133 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐶 ∈ V)
21a1i 11 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐶 ∈ V))
3 simp3 1133 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V) → 𝑇 ∈ V)
4 oteqex2 5380 . . 3 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V ↔ 𝑇 ∈ V))
53, 4syl5ibr 248 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V) → 𝐶 ∈ V))
6 opex 5347 . . . . . . . 8 𝐴, 𝐵⟩ ∈ V
7 opthg 5360 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑅, 𝑆⟩ ∧ 𝐶 = 𝑇)))
86, 7mpan 688 . . . . . . 7 (𝐶 ∈ V → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑅, 𝑆⟩ ∧ 𝐶 = 𝑇)))
98simprbda 501 . . . . . 6 ((𝐶 ∈ V ∧ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩) → ⟨𝐴, 𝐵⟩ = ⟨𝑅, 𝑆⟩)
10 opeqex 5379 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝑅, 𝑆⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V)))
119, 10syl 17 . . . . 5 ((𝐶 ∈ V ∧ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V)))
124adantl 484 . . . . 5 ((𝐶 ∈ V ∧ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩) → (𝐶 ∈ V ↔ 𝑇 ∈ V))
1311, 12anbi12d 632 . . . 4 ((𝐶 ∈ V ∧ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V) ↔ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑇 ∈ V)))
14 df-3an 1084 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V))
15 df-3an 1084 . . . 4 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V) ↔ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑇 ∈ V))
1613, 14, 153bitr4g 316 . . 3 ((𝐶 ∈ V ∧ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩) → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V)))
1716expcom 416 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V))))
182, 5, 17pm5.21ndd 383 1 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  Vcvv 3493  cop 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator